Categorification of the singular braid monoids and of the virtual braid groups

Anne-Laure Thiel
IRMA, University of Strasbourg

October 6, 2009

Summary

(1) Soergel bimodules

- Definition
- Two morphisms
- Tensoring Soergel bimodules
(2) Categorification of the \mathcal{B}_{n} and its generalization to $\mathcal{S B}_{n}$
- Categorification of the braid groups
- Categorification of the singular braid monoids
(3) Categorification of $\mathcal{V} \mathcal{B}_{n}$

Overview

(1) Soergel bimodules

- Definition
- Two morphisms
- Tensoring Soergel bimodules
(2) Categorification of the \mathcal{B}_{n} and its generalization to $\mathcal{S B}_{n}$
- Categorification of the braid groups
- Categorification of the singular braid monoids
(3) Categorification of $\mathcal{V} \mathcal{B}_{n}$

Let n be a positive integer.
Any ω in the symmetric group S_{n} acts on $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
\omega\left(x_{i}\right)=x_{\omega(i)}
$$

Let n be a positive integer.
Any ω in the symmetric group S_{n} acts on $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by

$$
\omega\left(x_{i}\right)=x_{\omega(i)}
$$

Let R be the subalgebra of $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ defined by

$$
R=\mathbb{Q}\left[x_{1}-x_{2}, x_{2}-x_{3}, \ldots, x_{n-1}-x_{n}\right] .
$$

The action of S_{n} preserves R. Let R^{H} be the subalgebra of elements of R fixed by a subgroup H of S_{n}. In particular $R^{\tau_{i}}$ is the subalgebra of R of elements fixed by the transposition $\tau_{i}=(i, i+1)$.

Let us consider the R-bimodules

$$
B_{i}=R \otimes_{R^{\tau_{i}}} R .
$$

Let us consider the R-bimodules

$$
B_{i}=R \otimes_{R^{\tau_{i}}} R .
$$

We introduce a grading on $R, R^{\tau_{i}}$ and B_{i} by setting

$$
\operatorname{deg}\left(x_{k}\right)=2
$$

If $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$ is a \mathbb{Z}-graded bimodule and p an integer then the shifted bimodule $M\{p\}$ is defined by $M\{p\}_{i}=M_{i-p}$.

Let us consider the R-bimodules

$$
B_{i}=R \otimes_{R^{\tau_{i}}} R .
$$

We introduce a grading on $R, R^{\tau_{i}}$ and B_{i} by setting

$$
\operatorname{deg}\left(x_{k}\right)=2
$$

If $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$ is a \mathbb{Z}-graded bimodule and p an integer then the shifted bimodule $M\{p\}$ is defined by $M\{p\}_{i}=M_{i-p}$.

Definition

Soergel bimodules are direct summands of shifted tensor products of B_{i} 's.

From now on, we will use the new variable $X_{i}=x_{i}-x_{i+1}$.

From now on, we will use the new variable $X_{i}=x_{i}-x_{i+1}$. Two degree-preserving morphisms of graded R-bimodules:

$$
\begin{array}{cccc}
\mathrm{br}_{i}: & B_{i} & \longrightarrow & R \\
1 \otimes 1 & \longmapsto & 1
\end{array}
$$

From now on, we will use the new variable $X_{i}=x_{i}-x_{i+1}$.
Two degree-preserving morphisms of graded R-bimodules:

$$
\left.\begin{array}{rl}
\mathrm{br}_{i}: & B_{i} \\
& \longrightarrow \\
& 1 \otimes 1
\end{array}\right) \longmapsto 1
$$

Since $R \cong R^{\tau_{i}} \oplus R^{\tau_{i}}\{2\}$ as graded $R^{\tau_{i}}$-modules, the morphism rb_{i} is well-defined (ie $p \operatorname{rb}_{i}(1)=\operatorname{rb}_{i}(1) p$ for all $\left.p \in R\right)$.

$$
p \operatorname{rb}_{i}(1)=\left(a+b X_{i}\right)\left(X_{i} \otimes 1+1 \otimes X_{i}\right)
$$

$$
\begin{aligned}
p \operatorname{rb}_{i}(1) & =\left(a+b X_{i}\right)\left(X_{i} \otimes 1+1 \otimes X_{i}\right) \\
& =a X_{i} \otimes 1+b X_{i}^{2} \otimes 1+a \otimes X_{i}+b X_{i} \otimes X_{i}
\end{aligned}
$$

$$
\begin{aligned}
p \operatorname{rb}_{i}(1) & =\left(a+b X_{i}\right)\left(X_{i} \otimes 1+1 \otimes X_{i}\right) \\
& =a X_{i} \otimes 1+b X_{i}^{2} \otimes 1+a \otimes X_{i}+b X_{i} \otimes X_{i} \\
& =X_{i} \otimes a+1 \otimes b X_{i}^{2}+1 \otimes a X_{i}+X_{i} \otimes b X_{i}
\end{aligned}
$$

$$
\begin{aligned}
p \operatorname{rb}_{i}(1) & =\left(a+b X_{i}\right)\left(X_{i} \otimes 1+1 \otimes X_{i}\right) \\
& =a X_{i} \otimes 1+b X_{i}^{2} \otimes 1+a \otimes X_{i}+b X_{i} \otimes X_{i} \\
& =X_{i} \otimes a+1 \otimes b X_{i}^{2}+1 \otimes a X_{i}+X_{i} \otimes b X_{i} \\
& =\left(X_{i} \otimes 1+1 \otimes X_{i}\right)\left(a+b X_{i}\right) \\
& =\operatorname{rb}_{i}(1) p .
\end{aligned}
$$

Three isomorphisms

Theorem (Soergel)

There are isomorphims of graded R-bimodules:

$$
\begin{aligned}
& \qquad B_{i} \otimes_{R} B_{i} \cong B_{i} \oplus B_{i}\{2\}, \\
& B_{i} \otimes_{R} B_{j} \cong B_{j} \otimes_{R} B_{i} \text { for }|i-j|>1, \\
& B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i} \cong B_{i, i+1} \oplus B_{i}\{2\}, \\
& B_{i+1} \otimes_{R} B_{i} \otimes_{R} B_{i+1} \cong B_{i, i+1} \oplus B_{i+1}\{2\} \text { so } \\
& B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i} \oplus B_{i+1}\{2\} \cong B_{i+1} \otimes_{R} B_{i} \otimes_{R} B_{i+1} \oplus B_{i}\{2\} \\
& \text { where } B_{i, i+1}=R \otimes_{R^{<\tau_{i}, \tau_{i+1}}}>R .
\end{aligned}
$$

$B_{i} \otimes_{R} B_{i} \cong B_{i} \oplus B_{i}\{2\}$

The bimodule B_{i} injects in two different ways into $B_{i} \otimes B_{i}$; either

$$
1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1
$$

or

$$
1 \otimes 1 \longmapsto 1 \otimes X_{i} \otimes 1
$$

The two elements $1 \otimes 1 \otimes 1$ and $1 \otimes X_{i} \otimes 1$ span $B_{i} \otimes B_{i}$ as a R-bimodule.

$B_{i} \otimes_{R} B_{j} \cong B_{j} \otimes_{R} B_{i}$

If $|i-j|>1$, the bimodule $B_{i} \otimes_{R} B_{j}$ is spanned by $1 \otimes 1 \otimes 1$ as a R-bimodule, so the isomorphism between $B_{i} \otimes_{R} B_{j}$ and $B_{j} \otimes_{R} B_{i}$ is entirely defined by the image of $1 \otimes 1 \otimes 1$:

$$
1 \otimes 1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1
$$

$B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i} \cong B_{i, i+1} \oplus B_{i}\{2\}$

The bimodule B_{i} injects into $B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i}$ in the following way:

$$
\begin{aligned}
& B_{i}\{2\} \longrightarrow B_{i} \otimes_{R} B_{i}\{2\} \longrightarrow B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i} \\
& 1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1 \longmapsto 1 \otimes X_{i+1} \otimes 1 \otimes 1+1 \otimes 1 \otimes X_{i+1} \otimes 1
\end{aligned}
$$

Since $R^{<\tau_{i}, \tau_{i+1}>} \simeq R^{\tau_{i}} \cap R^{\tau_{i+1}}$, the following injection is well-defined:

$$
\begin{aligned}
& B_{i, i+1} \longrightarrow B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i} \\
& 1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1 \otimes 1
\end{aligned}
$$

The bimodule $B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i}$ is the direct sum of the images of these two injections.

Overview

(1) Soergel bimodules

- Definition
- Two morphisms
- Tensoring Soergel bimodules
(2) Categorification of the \mathcal{B}_{n} and its generalization to $\mathcal{S B}_{n}$
- Categorification of the braid groups
- Categorification of the singular braid monoids
(3) Categorification of $\mathcal{V} \mathcal{B}_{n}$

Braid groups

Let n be a positive integer. The braid group \mathcal{B}_{n} is the group generated by $n-1$ generators σ_{i} for $i=1, \ldots, n-1$ which are diagrammatically depicted by

Figure: The positive elementary braid σ_{i}

Braid groups

Let n be a positive integer. The braid group \mathcal{B}_{n} is the group generated by $n-1$ generators σ_{i} for $i=1, \ldots, n-1$, their inverses are depicted by

Figure: The negative elementary braid σ_{i}^{-1}

Braid groups

Let n be a positive integer. The braid group \mathcal{B}_{n} is the group generated by $n-1$ generators σ_{i} for $i=1, \ldots, n-1$ satisfying the following relations

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { for }|i-j|>1
$$

Braid groups

Let n be a positive integer. The braid group \mathcal{B}_{n} is the group generated by $n-1$ generators σ_{i} for $i=1, \ldots, n-1$ satisfying the following relations

$$
\begin{gathered}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { for }|i-j|>1 \\
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
\end{gathered}
$$

Categorification of \mathcal{B}_{n}

To each braid generator $\sigma_{i} \in \mathcal{B}_{n}$ we assign the cochain complex $F\left(\sigma_{i}\right)$ of graded R-bimodules

$$
F\left(\sigma_{i}\right): 0 \longrightarrow \underset{-1}{0}\{2\} \xrightarrow[0]{\mathrm{rb}_{i}} \underset{0}{B_{i}} \longrightarrow 0
$$

Categorification of \mathcal{B}_{n}

To each braid generator $\sigma_{i} \in \mathcal{B}_{n}$ we assign the cochain complex $F\left(\sigma_{i}\right)$ of graded R-bimodules

$$
F\left(\sigma_{i}\right): 0 \longrightarrow \underset{-1}{0} \underset{0}{ } \underset{\sim}{\mathrm{rb}_{i}} \underset{i}{B_{i}} \longrightarrow 0
$$

To σ_{i}^{-1} we assign the cochain complex $F\left(\sigma_{i}^{-1}\right)$ of graded R-bimodules

$$
F\left(\sigma_{i}^{-1}\right): 0 \longrightarrow \underset{0}{B_{i}\{-2\}} \xrightarrow{\mathrm{br}_{i}} R\{-2\} \longrightarrow 0
$$

Categorification of \mathcal{B}_{n}

To each braid generator $\sigma_{i} \in \mathcal{B}_{n}$ we assign the cochain complex $F\left(\sigma_{i}\right)$ of graded R-bimodules

$$
F\left(\sigma_{i}\right): 0 \longrightarrow \underset{-1}{R\{2\}} \xrightarrow{\mathrm{rb}_{i}} \underset{0}{B_{i}} \longrightarrow 0
$$

To σ_{i}^{-1} we assign the cochain complex $F\left(\sigma_{i}^{-1}\right)$ of graded R-bimodules

$$
F\left(\sigma_{i}^{-1}\right): 0 \longrightarrow \underset{0}{B_{i}\{-2\}} \xrightarrow{\mathrm{br}_{i}} R\{-2\} \longrightarrow 0
$$

To the unit element 1 we assign the complex of graded R-bimodules

$$
F(1): 0 \longrightarrow \underset{0}{R} \longrightarrow 0,
$$

Categorification of \mathcal{B}_{n}

To any word $\sigma=\sigma_{i_{1}}^{\varepsilon_{1}} \ldots \sigma_{i_{k}}^{\varepsilon_{k}}$ where $\varepsilon_{1}, \ldots, \varepsilon_{k}= \pm 1$, we assign the complex of graded R-bimodules

$$
F(\sigma)=F\left(\sigma_{i_{1}}^{\varepsilon_{1}}\right) \otimes_{R} \cdots \otimes_{R} F\left(\sigma_{i_{k}}^{\varepsilon_{k}}\right)
$$

Categorification of \mathcal{B}_{n}

To any word $\sigma=\sigma_{i_{1}}^{\varepsilon_{1}} \ldots \sigma_{i_{k}}^{\varepsilon_{k}}$ where $\varepsilon_{1}, \ldots, \varepsilon_{k}= \pm 1$, we assign the complex of graded R-bimodules

$$
F(\sigma)=F\left(\sigma_{i_{1}}^{\varepsilon_{1}}\right) \otimes_{R} \cdots \otimes_{R} F\left(\sigma_{i_{k}}^{\varepsilon_{k}}\right) .
$$

Example given

Categorification of \mathcal{B}_{n}

Rouquier proved the following result, which is called a categorification of the braid group \mathcal{B}_{n}.

Theorem (Rouquier)

If ω and ω^{\prime} are words representing the same element of \mathcal{B}_{n}, then $F(\omega)$ and $F\left(\omega^{\prime}\right)$ are homotopy equivalent complexes of graded R-bimodules.

$F(1)$:

$F(1)$:

$$
g \circ f-\mathrm{id}=d \circ h+h \circ d \text { and } f \circ g-\mathrm{id}=d \circ h+h \circ d
$$

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ which can be diagrammatically depicted by

Figure: The singular elementary braid ρ_{i}

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ such that the generators $\sigma_{i}^{ \pm 1}$ satisfy the braid relations and the following relations are verified

$$
\rho_{i} \rho_{j}=\rho_{j} \rho_{i} \text { for }|i-j|>1,
$$

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ such that the generators $\sigma_{i}^{ \pm 1}$ satisfy the braid relations and the following relations are verified

$$
\begin{aligned}
& \rho_{i} \rho_{j}=\rho_{j} \rho_{i} \text { for }|i-j|>1, \\
& \sigma_{i} \rho_{j}=\rho_{j} \sigma_{i} \text { for }|i-j| \neq 1,
\end{aligned}
$$

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ such that the generators $\sigma_{i}^{ \pm 1}$ satisfy the braid relations and the following relations are verified

$$
\begin{aligned}
& \rho_{i} \rho_{j}=\rho_{j} \rho_{i} \text { for }|i-j|>1, \\
& \sigma_{i} \rho_{j}=\rho_{j} \sigma_{i} \text { for }|i-j| \neq 1,
\end{aligned}
$$

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ such that the generators $\sigma_{i}^{ \pm 1}$ satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\rho_{i} \rho_{j}=\rho_{j} \rho_{i} \text { for }|i-j|>1 \\
\sigma_{i} \rho_{j}=\rho_{j} \sigma_{i} \text { for }|i-j| \neq 1 \\
\sigma_{i} \sigma_{i+1} \rho_{i}=\rho_{i+1} \sigma_{i} \sigma_{i+1}
\end{gathered}
$$

Singular braid monoids

The singular braid monoid $\mathcal{S B}_{n}$ is the monoid generated by $3(n-1)$ generators $\sigma_{i}, \sigma_{i}^{-1}$ and ρ_{i}, for $i=1, \ldots, n-1$ such that the generators $\sigma_{i}^{ \pm 1}$ satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\rho_{i} \rho_{j}=\rho_{j} \rho_{i} \text { for }|i-j|>1 \\
\sigma_{i} \rho_{j}=\rho_{j} \sigma_{i} \text { for }|i-j| \neq 1 \\
\sigma_{i} \sigma_{i+1} \rho_{i}=\rho_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i+1} \sigma_{i} \rho_{i+1}=\rho_{i} \sigma_{i+1} \sigma_{i}
\end{gathered}
$$

Categorification of $\mathcal{S B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{S} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ρ_{i} we assign the cochain complex $F\left(\rho_{i}\right)$ of graded R-bimodules

$$
F\left(\rho_{i}\right): 0 \longrightarrow \underset{0}{B_{i}} \longrightarrow 0
$$

Categorification of $\mathcal{S} \mathcal{B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{S} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ρ_{i} we assign the cochain complex $F\left(\rho_{i}\right)$ of graded R-bimodules

$$
F\left(\rho_{i}\right): 0 \longrightarrow \underset{0}{B_{i}} \longrightarrow 0
$$

To a singular braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Categorification of $\mathcal{S B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{S} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ρ_{i} we assign the cochain complex $F\left(\rho_{i}\right)$ of graded R-bimodules

$$
F\left(\rho_{i}\right): 0 \longrightarrow \underset{0}{B_{i}} \longrightarrow 0
$$

To a singular braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Theorem

If ω and ω^{\prime} are words representing the same element of $\mathcal{S B}_{n}$, then $F(\omega)$ and $F\left(\omega^{\prime}\right)$ are homotopy equivalent complexes of R-bimodules.

Overview

(1) Soergel bimodules

- Definition
- Two morphisms
- Tensoring Soergel bimodules
(2) Categorification of the \mathcal{B}_{n} and its generalization to $\mathcal{S B}_{n}$
- Categorification of the braid groups
- Categorification of the singular braid monoids
(3) Categorification of $\mathcal{V} \mathcal{B}_{n}$

Virtual braid groups

The virtual braid group $\mathcal{V} \mathcal{B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ which can be diagrammatically depicted by

Figure: The virtual elementary braid ζ_{i}

Virtual braid groups

The virtual braid group $\mathcal{V} \mathcal{B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ such that the generators σ_{i} satisfy the braid relations and the following relations are verified

Virtual braid groups

The virtual braid group $\mathcal{V} \mathcal{B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ such that the generators σ_{i} satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\zeta_{i} \zeta_{j}=\zeta_{j} \zeta_{i} \text { for }|i-j|>1 \\
\zeta_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \zeta_{i+1}
\end{gathered}
$$

Virtual braid groups

The virtual braid group $\mathcal{V} \mathcal{B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ such that the generators σ_{i} satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\zeta_{i} \zeta_{j}=\zeta_{j} \zeta_{i} \text { for }|i-j|>1, \\
\zeta_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \zeta_{i+1}, \\
\zeta_{i}^{2}=1,
\end{gathered}
$$

Virtual braid groups

The virtual braid group $\mathcal{V} \mathcal{B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ such that the generators σ_{i} satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\zeta_{i} \zeta_{j}=\zeta_{j} \zeta_{i} \text { for }|i-j|>1 \\
\zeta_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \zeta_{i+1} \\
\zeta_{i}^{2}=1 \\
\sigma_{i} \zeta_{j}=\zeta_{j} \sigma_{i} \text { for }|i-j|>1
\end{gathered}
$$

Virtual braid groups

The virtual braid group $\mathcal{V B}_{n}$ is the group generated by $2(n-1)$ generators σ_{i} and ζ_{i} for $i=1, \ldots, n-1$ such that the generators σ_{i} satisfy the braid relations and the following relations are verified

$$
\begin{gathered}
\zeta_{i} \zeta_{j}=\zeta_{j} \zeta_{i} \text { for }|i-j|>1 \\
\zeta_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \zeta_{i+1} \\
\zeta_{i}^{2}=1 \\
\sigma_{i} \zeta_{j}=\zeta_{j} \sigma_{i} \text { for }|i-j|>1 \\
\sigma_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \sigma_{i+1}
\end{gathered}
$$

Twisted bimodules

For each permutation ω in S_{n} we consider the R-bimodule R_{ω} : as a left R-module, R_{ω} is equal to R

$$
a . p=a p \text { for all } p \in R_{\omega}, a \in R
$$

while the right action of $a \in R$ is the multiplication by $\omega(a)$

$$
p . a=p \omega(a) \text { for all } p \in R_{\omega}, a \in R .
$$

Twisted bimodules

Lemma

For all $\omega, \omega^{\prime} \in S_{n}$ there is an isomorphism of R-bimodules

$$
\begin{aligned}
R_{\omega} \otimes_{R} R_{\omega^{\prime}} & \longrightarrow R_{\omega \omega^{\prime}} \\
a \otimes b & \longmapsto a \omega(b)
\end{aligned}
$$

Example given $R_{\tau_{i}} \otimes_{R} R_{\tau_{i}} \cong R$.

Twisted bimodules

Lemma

For all $\omega, \omega^{\prime} \in S_{n}$ there is an isomorphism of R-bimodules

$$
\begin{aligned}
R_{\omega} \otimes_{R} R_{\omega^{\prime}} & \longrightarrow R_{\omega \omega^{\prime}} \\
a \otimes b & \longmapsto a \omega(b)
\end{aligned}
$$

Example given $R_{\tau_{i}} \otimes_{R} R_{\tau_{i}} \cong R$.

Lemma

For all $\omega, \omega^{\prime} \in S_{m}$ the R-bimodules $R_{\omega} \otimes_{R^{\omega^{\prime}}} R$ and $R \otimes_{R^{\omega \omega^{\prime} \omega^{-1}}} R_{\omega}$ are isomorphic.

Example given
$R_{\tau_{j}} \otimes_{R} B_{i} \cong R_{\tau_{j}} \otimes_{R^{\tau_{i}}} R \cong R \otimes_{R^{\tau_{j} \tau_{i} \tau_{j}}} R_{\tau_{j}} \cong R \otimes_{R^{\tau_{i}}} R_{\tau_{j}} \cong B_{i} \otimes_{R} R_{\tau_{j}}$ for $|i-j|>1$.

Categorification of $\mathcal{V} \mathcal{B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{V} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ζ_{i} we assign the cochain complex $F\left(\zeta_{i}\right)$ of graded R-bimodules

$$
F\left(\zeta_{i}\right): 0 \longrightarrow \underset{0}{R_{\tau_{i}}} \longrightarrow 0
$$

Categorification of $\mathcal{V} \mathcal{B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{V} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ζ_{i} we assign the cochain complex $F\left(\zeta_{i}\right)$ of graded R-bimodules

$$
F\left(\zeta_{i}\right): 0 \longrightarrow \underset{0}{R_{\tau_{i}}} \longrightarrow 0
$$

To a virtual braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Categorification of $\mathcal{V} \mathcal{B}_{n}$

To the generators σ_{i} and σ_{i}^{-1} of $\mathcal{V} \mathcal{B}_{n}$ coming from \mathcal{B}_{n} we assign Rouquier's complexes $F\left(\sigma_{i}\right)$ and $F\left(\sigma_{i}^{-1}\right)$.
To the generator ζ_{i} we assign the cochain complex $F\left(\zeta_{i}\right)$ of graded R-bimodules

$$
F\left(\zeta_{i}\right): 0 \longrightarrow \underset{0}{R_{\tau_{i}}} \longrightarrow 0
$$

To a virtual braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Theorem

If ω and ω^{\prime} are words representing the same element of $\mathcal{V} \mathcal{B}_{n}$, then $F(\omega)$ and $F\left(\omega^{\prime}\right)$ are homotopy equivalent complexes of R-bimodules.

Thank you.

