Categorification of the singular braid monoids and of the virtual braid groups

Anne-Laure Thiel

IRMA, University of Strasbourg

October 6, 2009

Summary

- Soergel bimodules
 - Definition
 - Two morphisms
 - Tensoring Soergel bimodules
- $oldsymbol{2}$ Categorification of the \mathcal{B}_n and its generalization to \mathcal{SB}_n
 - Categorification of the braid groups
 - Categorification of the singular braid monoids
- $oldsymbol{3}$ Categorification of \mathcal{VB}_n

Overview

- Soergel bimodules
 - Definition
 - Two morphisms
 - Tensoring Soergel bimodules
- 2 Categorification of the \mathcal{B}_n and its generalization to \mathcal{SB}_n
 - Categorification of the braid groups
 - Categorification of the singular braid monoids
- lacksquare Categorification of \mathcal{VB}_n

Let n be a positive integer.

Any ω in the symmetric group S_n acts on $\mathbb{Q}[x_1,\ldots,x_n]$ by

$$\omega(x_i) = x_{\omega(i)}.$$

Let n be a positive integer.

Any ω in the symmetric group S_n acts on $\mathbb{Q}[x_1,\ldots,x_n]$ by

$$\omega(x_i) = x_{\omega(i)}.$$

Let R be the subalgebra of $\mathbb{Q}[x_1,\ldots,x_n]$ defined by

$$R = \mathbb{Q}[x_1 - x_2, x_2 - x_3, \dots, x_{n-1} - x_n].$$

The action of S_n preserves R. Let R^H be the subalgebra of elements of R fixed by a subgroup H of S_n . In particular R^{τ_i} is the subalgebra of R of elements fixed by the transposition $\tau_i = (i, i+1)$.

Let us consider the R-bimodules

$$B_i = R \otimes_{R^{\tau_i}} R.$$

Let us consider the *R*-bimodules

$$B_i = R \otimes_{R^{\tau_i}} R.$$

We introduce a grading on R, R^{τ_i} and B_i by setting

$$\deg(x_k) = 2.$$

If $M=\bigoplus_{i\in\mathbb{Z}}M_i$ is a \mathbb{Z} -graded bimodule and p an integer then the shifted bimodule $M\{p\}$ is defined by $M\{p\}_i=M_{i-p}$.

4 11 2 4 12 2 4 12 2 2 4 12 2 4 12 2

Let us consider the *R*-bimodules

$$B_i = R \otimes_{R^{\tau_i}} R.$$

We introduce a grading on R, R^{τ_i} and B_i by setting

$$\deg(x_k) = 2.$$

If $M=\bigoplus_{i\in\mathbb{Z}}M_i$ is a \mathbb{Z} -graded bimodule and p an integer then the shifted bimodule $M\{p\}$ is defined by $M\{p\}_i=M_{i-n}$.

Definition

Soergel bimodules are direct summands of shifted tensor products of B_i 's.

From now on, we will use the new variable $X_i = x_i - x_{i+1}$.

From now on, we will use the new variable $X_i = x_i - x_{i+1}$. Two degree–preserving morphisms of graded R-bimodules:

$$\operatorname{br}_i: B_i \longrightarrow R$$
 $1 \otimes 1 \longmapsto 1$

From now on, we will use the new variable $X_i = x_i - x_{i+1}$. Two degree–preserving morphisms of graded R-bimodules:

$$\operatorname{br}_i: B_i \longrightarrow R$$
 $1 \otimes 1 \longmapsto 1$

$$rb_i: R\{2\} \longrightarrow B_i$$

$$1 \longmapsto X_i \otimes 1 + 1 \otimes X_i$$

Since $R \cong R^{\tau_i} \oplus R^{\tau_i}\{2\}$ as graded R^{τ_i} -modules, the morphism rb_i is well-defined ($ie\ p\ \mathrm{rb}_i(1) = \mathrm{rb}_i(1)p$ for all $p\in R$).

$$p \operatorname{rb}_i(1) = (a + bX_i)(X_i \otimes 1 + 1 \otimes X_i)$$

$$p \operatorname{rb}_{i}(1) = (a + bX_{i})(X_{i} \otimes 1 + 1 \otimes X_{i})$$
$$= aX_{i} \otimes 1 + bX_{i}^{2} \otimes 1 + a \otimes X_{i} + bX_{i} \otimes X_{i}$$

$$p \operatorname{rb}_{i}(1) = (a + bX_{i})(X_{i} \otimes 1 + 1 \otimes X_{i})$$
$$= aX_{i} \otimes 1 + bX_{i}^{2} \otimes 1 + a \otimes X_{i} + bX_{i} \otimes X_{i}$$
$$= X_{i} \otimes a + 1 \otimes bX_{i}^{2} + 1 \otimes aX_{i} + X_{i} \otimes bX_{i}$$

$$p \operatorname{rb}_{i}(1) = (a + bX_{i})(X_{i} \otimes 1 + 1 \otimes X_{i})$$

$$= aX_{i} \otimes 1 + bX_{i}^{2} \otimes 1 + a \otimes X_{i} + bX_{i} \otimes X_{i}$$

$$= X_{i} \otimes a + 1 \otimes bX_{i}^{2} + 1 \otimes aX_{i} + X_{i} \otimes bX_{i}$$

$$= (X_{i} \otimes 1 + 1 \otimes X_{i})(a + bX_{i})$$

$$= \operatorname{rb}_{i}(1)p.$$

Three isomorphisms

Theorem (Soergel)

There are isomorphims of graded R-bimodules:

$$\begin{array}{cccc} B_{i}\otimes_{R}B_{i}&\cong&B_{i}\oplus B_{i}\{2\},\\ B_{i}\otimes_{R}B_{j}&\cong&B_{j}\otimes_{R}B_{i}\text{ for }|i-j|>1,\\ B_{i}\otimes_{R}B_{i+1}\otimes_{R}B_{i}&\cong&B_{i,i+1}\oplus B_{i}\{2\},\\ B_{i+1}\otimes_{R}B_{i}\otimes_{R}B_{i+1}&\cong&B_{i,i+1}\oplus B_{i+1}\{2\}\text{ so}\\ B_{i}\otimes_{R}B_{i+1}\otimes_{R}B_{i}\oplus B_{i+1}\{2\}&\cong&B_{i+1}\otimes_{R}B_{i}\otimes_{R}B_{i+1}\oplus B_{i}\{2\}\end{array}$$

where
$$B_{i,i+1} = R \otimes_{R^{<\tau_i,\tau_{i+1}>}} R$$
.

$B_i \otimes_R B_i \cong B_i \oplus B_i \{2\}$

The bimodule B_i injects in two different ways into $B_i \otimes B_i$; either

$$1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1$$

or

$$1 \otimes 1 \longmapsto 1 \otimes X_i \otimes 1$$
.

The two elements $1 \otimes 1 \otimes 1$ and $1 \otimes X_i \otimes 1$ span $B_i \otimes B_i$ as a R-bimodule.

$$B_i \otimes_R B_j \cong B_j \otimes_R B_i$$

If |i-j|>1, the bimodule $B_i\otimes_R B_j$ is spanned by $1\otimes 1\otimes 1$ as a R-bimodule, so the isomorphism between $B_i\otimes_R B_j$ and $B_j\otimes_R B_i$ is entirely defined by the image of $1\otimes 1\otimes 1$:

$$1 \otimes 1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1$$

$$B_i \otimes_R B_{i+1} \otimes_R B_i \cong B_{i,i+1} \oplus B_i \{2\}$$

The bimodule B_i injects into $B_i \otimes_R B_{i+1} \otimes_R B_i$ in the following way:

$$B_{i}\{2\} \longrightarrow B_{i} \otimes_{R} B_{i}\{2\} \longrightarrow B_{i} \otimes_{R} B_{i+1} \otimes_{R} B_{i}$$

$$1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1 \longmapsto 1 \otimes X_{i+1} \otimes 1 \otimes 1 + 1 \otimes 1 \otimes X_{i+1} \otimes 1$$

Since $R^{<\tau_i,\tau_{i+1}>} \simeq R^{\tau_i} \cap R^{\tau_{i+1}}$, the following injection is well-defined:

$$B_{i,i+1} \longrightarrow B_i \otimes_R B_{i+1} \otimes_R B_i$$
$$1 \otimes 1 \longmapsto 1 \otimes 1 \otimes 1 \otimes 1$$

The bimodule $B_i \otimes_R B_{i+1} \otimes_R B_i$ is the direct sum of the images of these two injections.

Overview

- Soergel bimodules
 - Definition
 - Two morphisms
 - Tensoring Soergel bimodules
- $oldsymbol{2}$ Categorification of the \mathcal{B}_n and its generalization to \mathcal{SB}_n
 - Categorification of the braid groups
 - Categorification of the singular braid monoids
- $oxed{3}$ Categorification of \mathcal{VB}_n

Let n be a positive integer. The braid group \mathcal{B}_n is the group generated by n-1 generators σ_i for $i=1,\ldots,n-1$ which are diagrammatically depicted by

Figure: The positive elementary braid σ_i

Let n be a positive integer. The braid group \mathcal{B}_n is the group generated by n-1 generators σ_i for $i=1,\ldots,n-1$, their inverses are depicted by

Figure: The negative elementary braid σ_i^{-1}

Let n be a positive integer. The braid group \mathcal{B}_n is the group generated by n-1 generators σ_i for $i=1,\ldots,n-1$ satisfying the following relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 for $|i - j| > 1$,

Let n be a positive integer. The braid group \mathcal{B}_n is the group generated by n-1 generators σ_i for $i=1,\ldots,n-1$ satisfying the following relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| > 1,$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}.$$

To each braid generator $\sigma_i \in \mathcal{B}_n$ we assign the cochain complex $F(\sigma_i)$ of graded R-bimodules

$$F(\sigma_i): 0 \longrightarrow R\{2\} \xrightarrow{\mathrm{rb}_i} B_i \longrightarrow 0$$

To each braid generator $\sigma_i \in \mathcal{B}_n$ we assign the cochain complex $F(\sigma_i)$ of graded R-bimodules

$$F(\sigma_i): 0 \longrightarrow R\{2\} \xrightarrow{\operatorname{rb}_i} B_i \longrightarrow 0$$

To σ_i^{-1} we assign the cochain complex $F(\sigma_i^{-1})$ of graded R-bimodules

$$F(\sigma_i^{-1}): 0 \longrightarrow B_i\{-2\} \xrightarrow{\operatorname{br}_i} R\{-2\} \longrightarrow 0$$

To each braid generator $\sigma_i \in \mathcal{B}_n$ we assign the cochain complex $F(\sigma_i)$ of graded R-bimodules

$$F(\sigma_i): 0 \longrightarrow R\{2\} \xrightarrow{\mathrm{rb}_i} B_i \longrightarrow 0$$

To σ_i^{-1} we assign the cochain complex $F(\sigma_i^{-1})$ of graded R-bimodules

$$F(\sigma_i^{-1}): 0 \longrightarrow B_i\{-2\} \xrightarrow{\operatorname{br}_i} R\{-2\} \longrightarrow 0$$

To the unit element 1 we assign the complex of graded R-bimodules

$$F(1): 0 \longrightarrow \underset{\mathbf{0}}{R} \longrightarrow 0,$$

To any word $\sigma=\sigma_{i_1}^{\varepsilon_1}\dots\sigma_{i_k}^{\varepsilon_k}$ where $\varepsilon_1,\dots,\varepsilon_k=\pm 1$, we assign the complex of graded R-bimodules

$$F(\sigma) = F(\sigma_{i_1}^{\varepsilon_1}) \otimes_R \cdots \otimes_R F(\sigma_{i_k}^{\varepsilon_k}).$$

To any word $\sigma=\sigma_{i_1}^{\varepsilon_1}\dots\sigma_{i_k}^{\varepsilon_k}$ where $\varepsilon_1,\dots,\varepsilon_k=\pm 1$, we assign the complex of graded R-bimodules

$$F(\sigma) = F(\sigma_{i_1}^{\varepsilon_1}) \otimes_R \cdots \otimes_R F(\sigma_{i_k}^{\varepsilon_k}).$$

Example given

Rouquier proved the following result, which is called a categorification of the braid group \mathcal{B}_n .

Theorem (Rouquier)

If ω and ω' are words representing the same element of \mathcal{B}_n , then $F(\omega)$ and $F(\omega')$ are homotopy equivalent complexes of graded R-bimodules.

$$F(1):$$
 0 \longrightarrow R \longrightarrow 0

 $g \circ f - \mathrm{id} = d \circ h + h \circ d$ and $f \circ g - \mathrm{id} = d \circ h + h \circ d$

 $g \circ f - \mathrm{id} = d \circ h + h \circ d$ and $f \circ g - \mathrm{id} = d \circ h + h \circ d$

 $g \circ f - id = d \circ h + h \circ d$ and $f \circ g - id = d \circ h + h \circ d$

Singular braid monoids

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ which can be diagrammatically depicted by

Figure: The singular elementary braid ρ_i

Singular braid monoids

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ such that the generators $\sigma_i^{\pm 1}$ satisfy the braid relations and the following relations are verified i+1 i+1

$$\rho_i \rho_j = \rho_j \rho_i$$
 for $|i - j| > 1$,

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ such that the generators $\sigma_i^{\pm 1}$ satisfy the braid relations and the following relations are verified i i+1 i i+1

$$ho_i
ho_j =
ho_j
ho_i ext{ for } |i - j| > 1,$$
 $\sigma_i
ho_j =
ho_j \sigma_i ext{ for } |i - j| \neq 1,$

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ such that the generators $\sigma_i^{\pm 1}$ satisfy the braid relations and the following relations are verified $i=1,\ldots,n-1$

$$\rho_i \rho_j = \rho_j \rho_i \text{ for } |i - j| > 1,$$

$$\sigma_i \rho_j = \rho_j \sigma_i \text{ for } |i - j| \neq 1,$$

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ such that the generators $\sigma_i^{\pm 1}$ satisfy the braid relations and the following relations are verified

$$\begin{split} &\rho_i\rho_j=\rho_j\rho_i \text{ for } |i-j|>1,\\ &\sigma_i\rho_j=\rho_j\sigma_i \text{ for } |i-j|\neq 1,\\ &\sigma_i\sigma_{i+1}\rho_i=\rho_{i+1}\sigma_i\sigma_{i+1}, \end{split}$$

The singular braid monoid \mathcal{SB}_n is the monoid generated by 3(n-1) generators σ_i , σ_i^{-1} and ρ_i , for $i=1,\ldots,n-1$ such that the generators $\sigma_i^{\pm 1}$ satisfy the braid relations and the following relations are verified

$$\begin{split} \rho_i \rho_j &= \rho_j \rho_i \text{ for } |i-j| > 1, \\ \sigma_i \rho_j &= \rho_j \sigma_i \text{ for } |i-j| \neq 1, \\ \sigma_i \sigma_{i+1} \rho_i &= \rho_{i+1} \sigma_i \sigma_{i+1}, \\ \sigma_{i+1} \sigma_i \rho_{i+1} &= \rho_i \sigma_{i+1} \sigma_i. \end{split}$$

Categorification of \mathcal{SB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{SB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ρ_i we assign the cochain complex $F(\rho_i)$ of graded R-bimodules

$$F(\rho_i): 0 \longrightarrow B_i \longrightarrow 0.$$

Categorification of \mathcal{SB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{SB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ρ_i we assign the cochain complex $F(\rho_i)$ of graded R-bimodules

$$F(\rho_i): 0 \longrightarrow B_i \longrightarrow 0.$$

To a singular braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Categorification of \mathcal{SB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{SB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ρ_i we assign the cochain complex $F(\rho_i)$ of graded R-bimodules

$$F(\rho_i): 0 \longrightarrow B_i \longrightarrow 0.$$

To a singular braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Theorem

If ω and ω' are words representing the same element of \mathcal{SB}_n , then $F(\omega)$ and $F(\omega')$ are homotopy equivalent complexes of R-bimodules.

Overview

- Soergel bimodules
 - Definition
 - Two morphisms
 - Tensoring Soergel bimodules
- 2 Categorification of the \mathcal{B}_n and its generalization to \mathcal{SB}_n
 - Categorification of the braid groups
 - Categorification of the singular braid monoids
- lacksquare Categorification of \mathcal{VB}_n

The virtual braid group \mathcal{VB}_n is the group generated by 2(n-1) generators σ_i and ζ_i for $i=1,\ldots,n-1$ which can be diagrammatically depicted by

Figure: The virtual elementary braid ζ_i

$$\zeta_i \zeta_j = \zeta_j \zeta_i$$
 for $|i - j| > 1$,

$$\zeta_i \zeta_j = \zeta_j \zeta_i \text{ for } |i - j| > 1,$$

$$\zeta_i \zeta_{i+1} \zeta_i = \zeta_{i+1} \zeta_i \zeta_{i+1},$$

$$\begin{aligned} \zeta_i \zeta_j &= \zeta_j \zeta_i \text{ for } |i-j| > 1, \\ \zeta_i \zeta_{i+1} \zeta_i &= \zeta_{i+1} \zeta_i \zeta_{i+1}, \\ \zeta_i^2 &= 1, \end{aligned}$$

$$\begin{split} \zeta_i\zeta_j &= \zeta_j\zeta_i \text{ for } |i-j| > 1, \\ \zeta_i\zeta_{i+1}\zeta_i &= \zeta_{i+1}\zeta_i\zeta_{i+1}, \\ \zeta_i^2 &= 1, \\ \sigma_i\zeta_j &= \zeta_j\sigma_i \text{ for } |i-j| > 1, \end{split}$$

$$\begin{split} \zeta_i\zeta_j &= \zeta_j\zeta_i \text{ for } |i-j| > 1, \\ \zeta_i\zeta_{i+1}\zeta_i &= \zeta_{i+1}\zeta_i\zeta_{i+1}, \\ \zeta_i^2 &= 1, \\ \sigma_i\zeta_j &= \zeta_j\sigma_i \text{ for } |i-j| > 1, \\ \sigma_i\zeta_{i+1}\zeta_i &= \zeta_{i+1}\zeta_i\sigma_{i+1}. \end{split}$$

Twisted bimodules

For each permutation ω in S_n we consider the R-bimodule R_ω : as a left R-module, R_ω is equal to R

$$a.p = ap$$
 for all $p \in R_{\omega}, \ a \in R$

while the right action of $a \in R$ is the multiplication by $\omega(a)$

$$p.a = p\omega(a)$$
 for all $p \in R_{\omega}, \ a \in R$.

Twisted bimodules

Lemma

For all $\omega, \omega' \in S_n$ there is an isomorphism of R-bimodules

$$\begin{array}{ccc} R_{\omega} \otimes_{R} R_{\omega'} & \longrightarrow & R_{\omega\omega'} \\ a \otimes b & \longmapsto & a\omega(b) \end{array}$$

Example given $R_{\tau_i} \otimes_R R_{\tau_i} \cong R$.

Twisted bimodules

Lemma

For all $\omega, \omega' \in S_n$ there is an isomorphism of R-bimodules

$$\begin{array}{ccc} R_{\omega} \otimes_{R} R_{\omega'} & \longrightarrow & R_{\omega\omega'} \\ a \otimes b & \longmapsto & a\omega(b) \end{array}$$

Example given $R_{\tau_i} \otimes_R R_{\tau_i} \cong R$.

Lemma

For all $\omega, \omega' \in S_m$ the R-bimodules $R_\omega \otimes_{R^{\omega'}} R$ and $R \otimes_{R^{\omega\omega'\omega^{-1}}} R_\omega$ are isomorphic.

Example given

$$R_{\tau_j} \otimes_R B_i \cong R_{\tau_j} \otimes_{R^{\tau_i}} R \cong R \otimes_{R^{\tau_j \tau_i \tau_j}} R_{\tau_j} \cong R \otimes_{R^{\tau_i}} R_{\tau_j} \cong B_i \otimes_R R_{\tau_j}$$
 for $|i - j| > 1$.

Categorification of \mathcal{VB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{VB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ζ_i we assign the cochain complex $F(\zeta_i)$ of graded R-bimodules

$$F(\zeta_i): 0 \longrightarrow R_{\tau_i} \longrightarrow 0.$$

Categorification of \mathcal{VB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{VB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ζ_i we assign the cochain complex $F(\zeta_i)$ of graded R-bimodules

$$F(\zeta_i): 0 \longrightarrow R_{\tau_i} \longrightarrow 0.$$

To a virtual braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Categorification of \mathcal{VB}_n

To the generators σ_i and σ_i^{-1} of \mathcal{VB}_n coming from \mathcal{B}_n we assign Rouquier's complexes $F(\sigma_i)$ and $F(\sigma_i^{-1})$.

To the generator ζ_i we assign the cochain complex $F(\zeta_i)$ of graded R-bimodules

$$F(\zeta_i): 0 \longrightarrow R_{\tau_i} \longrightarrow 0.$$

To a virtual braid word we assign the tensor product over R of the complexes associated to the generators involved in the expression of the word.

Theorem

If ω and ω' are words representing the same element of \mathcal{VB}_n , then $F(\omega)$ and $F(\omega')$ are homotopy equivalent complexes of R-bimodules.

Thank you.