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Soergel bimodules Definition

Two morphisms
Ten g gel bimodules

Let n be a positive integer.
Any w in the symmetric group S,, acts on Q[z1,...,x,] by

w(Ti) = To(s)-
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Soergel bimodules Definition

Tensoring Soergel bimodules

Let n be a positive integer.
Any w in the symmetric group S,, acts on Q[z1,...,x,] by

w(T;) = Tyy(5).-
Let R be the subalgebra of Q[x1,...,x,| defined by
R=Q[z1 — 22,72 — 23,...,Tn_1 — Tn).

The action of S,, preserves R. Let R be the subalgebra of
elements of R fixed by a subgroup H of S,,. In particular R™ is
the subalgebra of R of elements fixed by the transposition

T, = (i,i + 1).
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Soergel bimodules Definition

Two morphisms
Tensoring Soergel bimodules

Let us consider the R—bimodules

B, = R®gr~ R.
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Soergel bimodules Definition

Tensoring Soergel bimodules

Let us consider the R—bimodules
B, = R®g~ R.
We introduce a grading on R, R™ and B; by setting
deg(zy) = 2.
If M = @ M, is a Z—graded bimodule and p an integer then the

1EL
shifted bimodule M{p} is defined by M{p}; = M;_,,.
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Soergel bimodules Definition

Tensoring Soergel bimodules

Let us consider the R—bimodules
B, = R®g~ R.
We introduce a grading on R, R™ and B; by setting
deg(zy) = 2.
If M = @ M, is a Z—graded bimodule and p an integer then the

1EL
shifted bimodule M{p} is defined by M{p}; = M;_,,.

Definition

Soergel bimodules are direct summands of shifted tensor products
of B;'s.
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Soergel bimodules Definition

Two morphisms
Tensoring Soergel bimodules

From now on, we will use the new variable X; = x; — x;41.
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Soergel bimodules Definition

Two morphisms
Tensoring rgel bimodules

From now on, we will use the new variable X; = x; — x;41.
Two degree—preserving morphisms of graded R—bimodules:

br,: Bi — R
1®1 — 1
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Soergel bimodules Definition
Two morphisms

Tensoring Soergel bimodules

From now on, we will use the new variable X; = x; — x;41.
Two degree—preserving morphisms of graded R—bimodules:

bI‘ii BZ — R
1®1 — 1

1 — X;01+1®X;

Since R = R™ @ R {2} as graded R™—modules, the morphism rb;
is well-defined ( ie prb;(1) = rb;(1)p for all p € R).
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Soergel bimodules Definition
Two morphisms

Tensoring bimodules

P R e
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Soergel bimodules Definition
Two morphisms

Tensoring bimodules

prbi(l) = (a+in)(Xi®1+1®Xi)
= aX;®1+bX?®1+a®X; +bX;®X;
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Soergel bimodules Definition

Two morphisms
Tensoring Soergel bimodules

prbi(1) = (a+bX;)(X; ®1+1® X;)
= aX;®1+bX?®1+a®X; +bX; ® X,
= X;Qa+10bX?+1®aX; + X; @ bX;
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prb;(1)

Soergel bimodules Definition
Two morphisms

Tensoring Soergel bimodules

(a+bX)(Xi®1+1® X;)
aX;@1+bX}@1+a®X; +bX;®X;
Xi®a+1®bX?+1®aX; + X; ®bX,;
(X;®1+1® X;)(a+bX;)

rb;(1)p.
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Soergel bimodules Definition
Two morphisms
Tensoring Soergel bimodules

Three isomorphisms

Theorem (Soergel)

There are isomorphims of graded R—bimodules:

B; ®r B;

B; ®p Bj

B; ®r Bi+1 ®r B;

Bii1 ®r B; ®r Biy1

B; ®r Biy1 ®r B; @ Bi11{2}

B; © Bi{2},

B; ®g B; for |i — j| > 1,
Bii+1 @ Bi{2},

Biiy1 ® Biy1{2} so

B;i11 ®r B; ®r Biy1 © Bi{2}]

11111111

where Bi’i+1 =R ®R<Tia7'i+1> R.
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Soergel bimodules Definition
Two morphisms
Tensoring Soergel bimodules

B; ®g B; 2 B; @ B;{2}

The bimodule B; injects in two different ways into B; ® B;; either
11— 1®1x1

or
191l— 10X, ®1.

The two elements 1 ® 1® 1 and 1® X; ® 1 span B; ® B; as a
R-bimodule.
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Soergel bimodules Definition
Two morphisms
Tensoring Soergel bimodules

B; ®r Bj = Bj Qr B;

If |i — j| > 1, the bimodule B; ® Bj is spanned by 1® 1 ® 1 as a
R-bimodule, so the isomorphism between B; ®r B; and B; ®r B;
is entirely defined by the image of 1 ® 1 ® 1:

I11l®1l— 111
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Soergel bimodules Definition
Two morphisms
Tensoring Soergel bimodules

B; ®g Bi11 ®g B; = B, ;11 ® Bi{2}

The bimodule B; injects into B; ® g B;11 ®pg B; in the following
way:

Bi{2} — B; ®g Bi{2} — B; ®g Biy1 ®r B;
1901 — 19191 —1oXu0lol+l0le X o1

Since R<"¢:Ti+1> ~ RTi N RTi+1  the following injection is
well-defined:
Biit1 — Bi ®g Bit1 ®r B;
11—101®131
The bimodule B; @ B;+1 ®g B; is the direct sum of the images
of these two injections.
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Overview

9 Categorification of the B,, and its generalization to S5,
9 Categorification of the braid groups
o Categorification of the singular braid monoids
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Braid groups

Let n be a positive integer. The braid group B, is the group
generated by n — 1 generators o; for i = 1,...,n — 1 which are
diagrammatically depicted by

1 1—11 t1+1i+2 n

Figure: The positive elementary braid o;
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Braid groups

Let n be a positive integer. The braid group B,, is the group
generated by n — 1 generators g; fori =1,...,n — 1, their
inverses are depicted by

1 1—11 t+1i+2 n

Figure: The negative elementary braid O'i_l

14/40) Anne-Laure Thiel Categorification of SBy, and of VB,




Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Braid groups

Let n be a positive integer. The braid group B,, is the group
generated by n — 1 generators o; for i = 1,...,n — 1 satisfying the
following relations | joj+1

N

0;0j = 0;0; for |i—j‘>1, 1

15/40) Anne-Laure Thiel Categorification of SBy, and of VB,




Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Braid groups

Let n be a positive integer. The braid group B,, is the group
generated by n — 1 generators o; for i = 1,...,n — 1 satisfying the
following relations

N AN
oio; = ojo; for |i — j| > 1, (\
>
0i0i110; = 04103041 \
AN AN
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

To each braid generator o; € B,, we assign the cochain complex
F(o;) of graded R-bimodules

F(o;) : O—>R{2}—>lg —0
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

To each braid generator o; € B,, we assign the cochain complex
F(o;) of graded R-bimodules

F(o;) : O—>R{2}—>lg —0

To o; ! we assign the cochain complex F(o; ') of graded

R-bimodules

brl

F(o;1):0 — Bi{-2} =% R{ 2} — 0
0
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

To each braid generator o; € B,, we assign the cochain complex
F(o;) of graded R-bimodules

F(Ui):O—>R{2}rbi>Bi—>0
—1 0

To o; ! we assign the cochain complex F(o; ') of graded

R-bimodules
F(o;"): 0 — Bi{—2} 2% R{-2} — 0
0 1

To the unit element 1 we assign the complex of graded
R-bimodules
F(1):0 — %% — 0,
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

To any word o = Ufll ...af: where €1,...,e; = 1, we assign the
complex of graded R-bimodules

F(o) = F(05') ®p -~ ®r F(o5").

1
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

To any word o = Ufll ...af: where €1,...,e; = 1, we assign the
complex of graded R-bimodules
F(o) = F(Ufll) QRr - QR F(af:)

Example given

R®r R

F(aiai_l) : R ®pg B; B; ®r R{-2}

B; ®r Bi{—2}
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Categorification of the braid groups

Categorification of the Br, and its generalization to SBy, Categorification of the singular braid monoids
Categorifica e sing E

Categorification of B,

Rouquier proved the following result, which is called a
categorification of the braid group B,.

Theorem (Rouquier)

If w and W’ are words representing the same element of B,,, then
F(w) and F(w') are homotopy equivalent complexes of graded
R-bimodules.
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Categorification of the braid groups
Categorification of the singular braid monoids

Categorification of the 3,, and its generalization to SB,

R®rR
—id ® br; rb; ® id

F(O’ia'iil) : R®p B; B; ®r R{—Q}

rb; ®id id®br;
B; ®r Bi{—2}
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Categorification of the braid groups
Categorification of the singular braid monoids

Categorification of the 3,, and its generalization to SB,

20/40)

R®rR

F(O’ia'iil) : R®p B; B; ®r R{—Q}

B; KRR BZ{—Q}

F(1): 0 R 0

gof—id=doh+hodand fog—id=doh+hod
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Categorification of the braid groups
Categorification of the singular braid monoids

Categorification of the 3,, and its generalization to SB,

F(1):

gof—id=doh+hodand fog—id=doh+hod
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Categorification of the braid groups
Categorification of the singular braid monoids

Categorification of the 3,, and its generalization to SB,

F(1):

gof—id=doh+hodand fog—id=doh+hod
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Categorification of the braid groups

Categorification of the 3,, and its generalization to SB, Coimariieiien of Hie Stk b memsis

Singular braid monoids

The singular braid monoid SB,, is the monoid generated by
3(n — 1) generators o, ai_l and p;, for i = 1,...,n — 1 which can
be diagrammatically depicted by

1 1—11 1+1i+2 n

Figure: The singular elementary braid p;
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e . . o o Categorification of the braid groups
Cat ficat f the By, 1 it lization to SB B e P A A
ategorincation of the 5y, and 1ts generajization 10 © Sn Categorification of the singular braid monoids

Singular braid monoids

The singular braid monoid SB,, is the monoid generated by

3(n — 1) generators oy, o; ' and p;, for i =1,...,n— 1 such that

the generators aiil satisfy the braid relations and the following
relations are verified i1

N \ﬁ
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Singular braid monoids

The singular braid monoid SB,, is the monoid generated by

3(n — 1) generators oy, o; ' and p;, for i =1,...,n— 1 such that

the generators aiil satisfy the braid relations and the following

relations are verified 1 1+1 j j+1
T i+ 1 Jj Jj+1
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PP 2 : A or Categorification of the braid groups
Categorification of the 3,, and its generalization to SB, Categorification of the singular br;id -

Singular braid monoids

The singular braid monoid SB,, is the monoid generated by

3(n — 1) generators oy, o; ' and p;, for i =1,...,n— 1 such that

the generators aiil satisfy the braid relations and the following

relations are verified 7 i+1
pip; = pjpi for [i — j| > 1, ‘ ?
aipj:pjaifor ”i—j|751, i\i+1
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. . . o o1 Categorification of the braid groups
Categorification of the 3,, and its generalization to SB, Categorification of the singular br;id -

Singular braid monoids

The singular braid monoid SB,, is the monoid generated by

3(n — 1) generators o, O'i_l and p;, for i =1,...,n — 1 such that
the generators oiil satisfy the braid relations and the following
relations are verified

o AN
pipj = pjpi for |i — j| > 1,
oip; = pjoi for [i — j| # 1, g
0i0i+1Pi = Pi+10i0i+1, o
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e . . o o Categorification of the braid groups
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Singular braid monoids

The singular braid monoid SB,, is the monoid generated by

3(n — 1) generators o;, ai_l and p;, fori =1,...,n — 1 such that
the generators aiﬂ satisfy the braid relations and the following
relations are verified

pipj = pjpi for [t — j| > 1, AN
oipj = pjoi for [ — j| # 1, \ -

0i0i+1Pi = Pi+10i0+1, \

N

Oit+10iPi+1 = Pi0i4+105.
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PP 2 : A or Categorification of the braid groups
Categorification of the 3,, and its generalization to SB, Categorification of the singular br;id -

Categorification of SB,

To the generators o; and ai_l of §B,, coming from B,, we assign
Rouquier's complexes F'(c;) and F(o; ).

To the generator p; we assign the cochain complex F(p;) of
graded R—bimodules

F(pi):0 — B; — 0.
0
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Categorification of the braid groups

Categorification of the 3,, and its generalization to SB, Coimariieiien of Hie Stk b memsis

Categorification of SB,

To the generators o; and O'i_l of §B,, coming from B,, we assign
Rouquier's complexes F'(c;) and F(o; ).

To the generator p; we assign the cochain complex F(p;) of
graded R—bimodules

F(pi):0 — B; — 0.
0

To a singular braid word we assign the tensor product over R of
the complexes associated to the generators involved in the
expression of the word.
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Categorification of the braid groups

Categorification of the 3,, and its generalization to SB, Coimariieiien of Hie Stk b memsis

Categorification of SB,

To the generators o; and O'i_l of §B,, coming from B,, we assign
Rouquier's complexes F'(c;) and F(o; ).

To the generator p; we assign the cochain complex F(p;) of
graded R—bimodules

F(pi):0 — B; — 0.
0

To a singular braid word we assign the tensor product over R of
the complexes associated to the generators involved in the
expression of the word.

If w and W’ are words representing the same element of SB,,, then
F(w) and F(w’) are homotopy equivalent complexes of
R-bimodules.
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Categorification of VB,

Overview

© Categorification of VB,
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators g; and (; for i = 1,...,n — 1 which can be
diagrammatically depicted by

1 1—11 t+1i+2 m

Figure: The virtual elementary braid (;
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators o; and (; for i = 1,...,n — 1 such that the generators
o; satisfy the braid relations and the following relations are verified

i i+1 joj+1
i i+1 i j+1
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators g; and (; for ¢ = 1,...,n — 1 such that the generators
o; satisfy the braid relations and the following relations are verified

Gi¢j = GG for |i — j| > 1,

GiGi+1Gi = Gi+1GiGit1,
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators o; and (; for i = 1,...,n — 1 such that the generators
o; satisfy the braid relations and the following relations are verified

7 1+ 1
Gi¢j = GG for |i — 7] > 1,

GiCit1G = Gi+1GiGit1, , 1
(2 _, v i+1
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators o; and (; for i = 1,...,n — 1 such that the generators
o; satisfy the braid relations and the following relations are verified

i+l g gl
ClCJ CJCZ for |Z*‘7|>1 k/ ‘ Ezﬂ
AN

GiGi+1G = Gi+1GiGit1,
=1,

; i i+l G g+l
AN
0iCj = (o for |i — j| > 1, W
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Categorification of VB,

Virtual braid groups

The virtual braid group VB, is the group generated by 2(n — 1)
generators o; and (; for i = 1,...,n — 1 such that the generators
o; satisfy the braid relations and the following relations are verified

Gi¢j = GG for |i — 7 > 1,

AN
GiGi+1G = Gi+1GiGit1,
sz = 17 D
0iGj = ¢joi for |i — j| > 1, N

0iGi+1G = Giy1GiTit1-
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Categorification of VB,

Twisted bimodules

For each permutation w in S,, we consider the R-bimodule R,,: as
a left R-module, R, is equal to R

ap=apforallpe R,, ae R
while the right action of a € R is the multiplication by w(a)

p.a =pw(a) for all p € R,, a € R.
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Categorification of VB,

Twisted bimodules

For all w,w’ € S,, there is an isomorphism of R-bimodules

R, ®r R,y — Ry
a®b — aw(b)

Example given R;, ®r R;, = R.
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Categorification of VB,

Twisted bimodules

For all w,w’ € S,, there is an isomorphism of R-bimodules

R, ®r R,y — Ry
a®b — aw(b)

Example given R;, ®r R;, = R.

For all w,w’ € S, the R-bimodules R, ® . R and
R ® puwlw=1 R, are isomorphic.

Example given
RT]‘ ®RB’L = RTj ®RT7~R = R®RTjTiTj R‘Fj = R®R7-2 RTj = Bi®RRTj
for |i — j| > 1.
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Categorification of VB,

Categorification of VB,

To the generators o; and ai_l of VB,, coming from B,, we assign
Rouquier's complexes F(a;) and F(o; ).
To the generator (; we assign the cochain complex F'((;) of graded
R-bimodules
F(¢):0— R, — 0.
0
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Categorification of VB,

Categorification of VB,

To the generators o; and ai_l of VB,, coming from B,, we assign
Rouquier's complexes F(a;) and F(o; ).
To the generator (; we assign the cochain complex F'((;) of graded
R-bimodules
F(¢):0— R, — 0.
0

To a virtual braid word we assign the tensor product over R of the

complexes associated to the generators involved in the expression
of the word.
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Categorification of VB,

Categorification of VB,

To the generators o; and ai_l of VB,, coming from B,, we assign
Rouquier's complexes F(a;) and F(o; ).
To the generator (; we assign the cochain complex F'((;) of graded
R-bimodules
F(¢):0— R, — 0.
0

To a virtual braid word we assign the tensor product over R of the
complexes associated to the generators involved in the expression
of the word.

If w and W’ are words representing the same element of VB,,, then
F(w) and F(w’) are homotopy equivalent complexes of
R-bimodules.
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Categorification of VB,

Thank you.
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