Zariski-Van Kampen Method

Purpose: Obtain a presentation for the fundamental group of the complement of a plane projective curve in \mathbb{P}^2 . We will put together several ingredients, among which, the *Van Kampen Theorem* is

Theorem

 $\pi_1(X, x_0) = \pi_1(F_p, x_0) \rtimes \pi_1(M, p)$, where the action of $\pi_1(M, p)$ on $\pi_1(F_p, x_0)$ is given by the monodromy of π .

Theorem

 $\pi_1(X,x_0)=\pi_1(F_\rho,x_0)\rtimes\pi_1(M,p)$, where the action of $\pi_1(M,p)$ on $\pi_1(F_\rho,x_0)$ is given by the monodromy of π .

Proposition

Meridians around the same irreducible components of B are conjugate in $\pi_1(M \setminus B)$. Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of meridians around the same irreducible component.

Theorem

 $\pi_1(X,x_0)=\pi_1(F_\rho,x_0)\rtimes\pi_1(M,p)$, where the action of $\pi_1(M,p)$ on $\pi_1(F_\rho,x_0)$ is given by the monodromy of π .

Proposition

Meridians around the same irreducible components of B are conjugate in $\pi_1(M \setminus B)$. Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of meridians around the same irreducible component.

Proposition

The inclusion $M \setminus B \hookrightarrow M$ induces a surjective morphism, whose kernel is given by the smallest normal subgroup of $\pi_1(M \setminus B)$ containing meridians of all the irreducible components of B.

Let $\mathcal{C} \subset \mathbb{P}^2$ be a projective plane curve. Consider $P = [0:1:0] \in \mathbb{P}^2 \setminus \mathcal{C}$.

Let $\mathcal{C}\subset\mathbb{P}^2$ be a projective plane curve. Consider $P=[0:1:0]\in\mathbb{P}^2\setminus\mathcal{C}.$

Let $\mathcal{C} \subset \mathbb{P}^2$ be a projective plane curve. Consider $P = [0:1:0] \in \mathbb{P}^2 \setminus \mathcal{C}$. Project $\pi: \mathbb{P}^2 \setminus \{P\} \to \mathbb{P}^1$ from P

Let $\mathcal{C} \subset \mathbb{P}^2$ be a projective plane curve. Consider $P = [0:1:0] \in \mathbb{P}^2 \setminus \mathcal{C}$. Project $\pi: \mathbb{P}^2 \setminus \{P\} \to \mathbb{P}^1$ from P

Let $\mathcal{C} \subset \mathbb{P}^2$ be a projective plane curve. Consider $P = [0:1:0] \in \mathbb{P}^2 \setminus \mathcal{C}$. Project $\pi: \mathbb{P}^2 \setminus \{P\} \to \mathbb{P}^1$ from P

Remark (1)

Let $X = \mathbb{P}^2 \setminus (\mathcal{C} \cup \mathcal{L})$, then $\pi|_X : X \to \mathbb{P}^1 \setminus Z_n$ is a locally trivial fibration.

Remark (1)

Let $X = \mathbb{P}^2 \setminus (\mathcal{C} \cup L)$, then $\pi|_X : X \to \mathbb{P}^1 \setminus Z_n$ is a locally trivial fibration. Moreover, its fiber is $\mathbb{P}^1 \setminus Z_d$, where $d := \deg \mathcal{C}$.

Remark (2)

By (2.1), $\pi_1(X,x_0)=\pi_1(F_{Z_0},x_0)\rtimes\pi_1(\mathbb{P}^1\setminus Z_n,z_0)$. Action is given by the monodromy of $\pi_1(\mathbb{P}^1\setminus Z_n,z_0)$ on $\pi_1(F_{Z_0},x_0)$.

Remark (3)

Note that $\pi_1(F_{Z_0}, x_0) = \langle g_1, ..., g_d : g_d g_{d-1} \cdots g_1 = 1 \rangle$ and $\pi_1(\mathbb{P}^1 \setminus Z_n, z_0) = \langle \gamma_1, ..., \gamma_n : \gamma_n \cdots \gamma_1 = 1 \rangle$.

Theorem

 $\pi_1(X, x_0)$ admits the following presentation:

$$\langle g_1,...,g_d,\gamma_1,...,\gamma_n:g_dg_{d-1}\cdots g_1=\gamma_n\cdots\gamma_1=1,g_i^{\gamma_j}=\gamma_j^{-1}g_i\gamma_j\rangle$$

Theorem

 $\pi_1(\mathbb{P}^2\setminus\mathcal{C})$ admits the following presentation:

$$\langle g_1,...,g_d:g_dg_{d-1}\cdots g_1=1,g_i^{\gamma_j}=g_i\rangle$$

Remark

 \blacksquare Let $\mathcal{C}=\mathcal{C}_1\cup...\cup\mathcal{C}_r$ the decomposition of \mathcal{C} in its irreducible components, then

$$H_1(\mathbb{P}^2 \setminus \mathcal{C}) = \mathbb{Z}^{r-1} \oplus \mathbb{Z}/(d_1,...,d_r),$$

where $d_i := \deg C$.

Remark

 \blacksquare Let $\mathcal{C}=\mathcal{C}_1\cup...\cup\mathcal{C}_r$ the decomposition of \mathcal{C} in its irreducible components, then

$$H_1(\mathbb{P}^2 \setminus \mathcal{C}) = \mathbb{Z}^{r-1} \oplus \mathbb{Z}/(d_1,...,d_r),$$

where $d_i := \deg C$.

It two curves are in a connected family of equisingular curves, then they are isotopic

Example

 ${\mathcal C}$ smooth of degree $d\Rightarrow \pi_1({\mathbb P}^2\setminus {\mathcal C})={\mathbb Z}/d{\mathbb Z}.$

Example

 \mathcal{C} smooth of degree $d\Rightarrow\pi_1(\mathbb{P}^2\setminus\mathcal{C})=\mathbb{Z}/d\mathbb{Z}$. For computation purposes it is more convenient to use a *non-generic* projection.

Example

 $\mathcal C$ smooth of degree $d\Rightarrow \pi_1(\mathbb P^2\setminus\mathcal C)=\mathbb Z/d\mathbb Z$. For computation purposes it is more convenient to use a *non-generic* projection. Use for instance $\mathcal C:=\{F=0\}$, where $F(X,Y,Z)=X^d+Y^d-Z^d$. $P=[0:1:0]\notin\mathcal C$ and $F_Y=dY^{d-1}$.

Example

 $\mathcal C$ smooth of degree $d\Rightarrow \pi_1(\mathbb P^2\setminus\mathcal C)=\mathbb Z/d\mathbb Z$. For computation purposes it is more convenient to use a *non-generic* projection. Use for instance $\mathcal C:=\{F=0\}$, where $F(X,Y,Z)=X^d+Y^d-Z^d$. $P=[0:1:0]\notin\mathcal C$ and $F_Y=dY^{d-1}$.

Let us compute the local monodromy of $x=y^d$. Consider $\gamma(t)=e^{2\pi t\sqrt{-1}}$ a loop around x=0. The fiber at $\gamma(t)$ is given by:

Example

 $\mathcal C$ smooth of degree $d\Rightarrow \pi_1(\mathbb P^2\setminus\mathcal C)=\mathbb Z/d\mathbb Z.$ Applying the Zariski-Van Kampen Theorem to these generators:

One obtains:

$$g_i = g_i^{(\sigma_1 \sigma_2 \cdots \sigma_{d-1})} = \begin{cases} g_d & i = 1 \\ g_d^{-1} g_{i-1} g_d & i \neq 1 \end{cases}$$

Example

 $\mathcal C$ smooth of degree $d\Rightarrow \pi_1(\mathbb P^2\setminus\mathcal C)=\mathbb Z/d\mathbb Z.$ Applying the Zariski-Van Kampen Theorem to these generators:

One obtains:

$$g_i = g_i^{(\sigma_1 \sigma_2 \cdots \sigma_{d-1})} = \begin{cases} g_d & i = 1 \\ g_d^{-1} g_{i-1} g_d & i \neq 1 \end{cases}$$

hence $g_2=g_d^{-1}g_1g_d=g_1$, and by induction $g_1=...=g_d=g$. Finally, $g_1\cdots g_d=1$ becomes $g^d=1$

$$\pi_1(\mathbb{P}^2 \setminus \mathcal{C}) = \langle g : g^d = 1 \rangle = \mathbb{Z}/d\mathbb{Z}.$$

 $\mathcal{C} \text{ nodal} \Rightarrow \pi_1(\mathcal{C}) \text{ is abelian.}$

 \mathcal{C} nodal $\Rightarrow \pi_1(\mathcal{C})$ is abelian. \mathcal{C}_1 and \mathcal{C}_2 intersect transversally $\Rightarrow \pi_1(\mathcal{C}) = \pi_1(\mathcal{C}_1) \oplus \pi_1(\mathcal{C}_2)$

 $\begin{array}{l} \mathcal{C} \text{ nodal} \Rightarrow \pi_1(\mathcal{C}) \text{ is abelian.} \\ \mathcal{C}_1 \text{ and } \mathcal{C}_2 \text{ intersect transversally} \Rightarrow \pi_1(\mathcal{C}) = \pi_1(\mathcal{C}_1) \oplus \pi_1(\mathcal{C}_2) \end{array}$

Remark (Harris)

The space of irreducible nodal curves with given number of nodes is connected

 $\mathcal{C} \text{ nodal} \Rightarrow \pi_1(\mathcal{C}) \text{ is abelian.}$

 \mathcal{C}_1 and \mathcal{C}_2 intersect transversally $\Rightarrow \pi_1(\mathcal{C}) = \pi_1(\mathcal{C}_1) \oplus \pi_1(\mathcal{C}_2)$

Remark (Harris)

The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski)

Let $\mathcal C$ be a general nodal rational curve of degree d. Consider $\tilde{\mathcal C}$ its dual. Note that $\tilde{\mathcal C}$ is a rational curve of degree 2(d-1), 2(d-2)(d-3) nodes, and 3(d-2) cusps. The fundamental group of $\tilde{\mathcal C}$ coincides with the fundamental group of the unordered configuration space of d points in $\mathbb S^2$, that is,

$$g_ig_j = g_jg_i, \ g_ig_{j+1}g_i = g_{i+1}g_ig_{i+1}, \ g_1\cdots g_{d-2}g_{d-1}^2g_{d-2}\cdots g_1 = 1$$

Non-Generic Projections

■ $P \in C$ that is, existence of asymptotes.

Non-Generic Projections

- lacksquare $P \in \mathcal{C}$ that is, existence of asymptotes.
- "Very" special fibers.

Local Braid Monodromy

■ Can be obtained from the Puiseux Series (local parametrization) of the curve around a singular point.

Local Braid Monodromy

- Can be obtained from the Puiseux Series (local parametrization) of the curve around a singular point.
- Computational methods are "generically" effective.

Global Braid Monodromy

■ Most difficult part of monodromy computations.

Global Braid Monodromy

- Most difficult part of monodromy computations.
- Real arrangements, real curves.

Global Braid Monodromy

- Most difficult part of monodromy computations.
- Real arrangements, real curves.
- Computational methods are effective essentially over $\mathbb{Z}[\sqrt{-1}]$.

Example
$$\sigma_1^8$$
: $g_1^{\sigma_1^8} = (g_2g_1)^4g_1(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4, g_1] = 1$

Example
$$\sigma_1^8\colon g_1^{\sigma_1^8} = (g_2g_1)^4g_1(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_1] = 1$$

$$g_2^{\sigma_1^8} = (g_2g_1)^4g_2(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_2] = 1$$

Example
$$\sigma_1^8\colon g_1^{\sigma_1^8} = (g_2g_1)^4g_1(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_1] = 1$$

$$g_2^{\sigma_1^8} = (g_2g_1)^4g_2(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_2] = 1$$

$$g_3^{\sigma_1^8} = g_3$$

Example
$$\sigma_1^8\colon \qquad g_1^{\sigma_1^8} = (g_2g_1)^4g_1(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_1] = 1 \\ g_2^{\sigma_1^8} = (g_2g_1)^4g_2(g_2g_1)^{-4} \quad \Rightarrow [(g_2g_1)^4,g_2] = 1 \\ g_3^{\sigma_1^8} = g_3 \\ g_4^{\sigma_1^8} = g_4$$

Example $\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3 \colon g_1^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2^{-1}g_4g_2 \qquad \Rightarrow g_4 = g_2g_1g_2^{-1} \\ g_2^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2$

Example $\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3:$ $g_1^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2^{-1}g_4g_2 \qquad \Rightarrow g_4 = g_2g_1g_2^{-1}$ $g_2^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2$ $g_3^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_3$

Example $\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3\colon$ $g_1^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2^{-1}g_4g_2 \qquad \Rightarrow g_4 = g_2g_1g_2^{-1}$ $g_2^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_2$ $g_3^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_3$ $g_4^{\sigma_3^{-1}\sigma_1^{-1}\sigma_2\sigma_1\sigma_3} = g_4g_2g_1g_2^{-1}g_4^{-1} \quad \Rightarrow g_4 = g_2g_1g_2^{-1}$