Zariski-Van Kampen Method

Purpose:
Obtain a presentation for the fundamental group of the complement of a plane

projective curve in P2.
We will put together several ingredients, among which, the Van Kampen Theorem is

key.
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Theorem

m1(X, X0) = m1(Fp, Xo) X w1 (M, p), where the action of w1 (M, p) on m1(Fp, Xo) is given
by the monodromy of .

Proposition

Meridians around the same irreducible components of B are conjugate in w1 (M \ B).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy
classes of meridians around the same irreducible component.

Proposition

The inclusion M \ B — M induces a surjective morphism, whose kernel is given by the
smallest normal subgroup of w1 (M \ B) containing meridians of all the irreducible
components of B.
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Let X = P2\ (CU L), then 7|y : X — P!\ Z, is a locally trivial fibration.
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Let X = P2\ (CU L), then w|x : X — P!\ Z, is a locally trivial fibration. Moreover, its
fiber is P! \ Z,, where d := degC.
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By (2.1), 71 (X, x0) = m1(Fzy, Xo) X m1(P" \ Zn, Zp). Action is given by the monodromy
of 71 (P'\ Zn, 29) on 71 (Fzy, Xo)-
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9d

Note that 71 (Fz,, X0) = (91, ----9d : 9a9d—1---91 = 1) and
w1 (P'\ Zn, 20) = (71, vn s yn - = 1).
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9d
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71 (X, Xo) admits the following presentation:

(G1s+sGd> V15 s Yn - 9dGd—1 - G1 = Yn- Y1 = 1:97’ = ’Yj_1gi'Yj>
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9d

71 (P2 \ C) admits the following presentation:

(91,90 Ga9d—1--91 = 1,9/ = gi)



m Let C = Cy U... UC, the decomposition of C in its irreducible components, then

Hi(PP\C)=Z"""®2z/(dy,...,d),

where d; := degC.



m Let C = Cy U... UC, the decomposition of C in its irreducible components, then

Hi(PP\C)=Z"""®2z/(dy,...,d),

where d; := degC.

m [t two curves are in a connected family of equisingular curves, then they are
isotopic
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Example

C smooth of degree d = (P \ C) = Z/dZ. For computation purposes it is more
convenient to use a non-generic projection. Use for instance C := {F = 0}, where
F(X,Y,Z) =X+ Y9 _Z9. P=[0:1:0]¢Cand Fy = dY?".

Let us compute the local monodromy of x = y?. Consider ~(t) = e2mtv=T 3 loop
around x = 0. The fiber at ~(t) is given by:
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€ smooth of degree d = w1 (P2 \ C) = Z/dZ.
The monodromy around x = 0 looks as follows:
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Example

€ smooth of degree d = w1 (P \ C) = Z/dZ.
Corresponds to the braid o105 - - - 0g_1

|
N
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Example

€ smooth of degree d = w1 (P2 \ C) = Z/dZ.
Note that the global part of the monodromy has no contribution:

/6
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€ smooth of degree d = w1 (P2 \ C) = Z/dZ.
Applying the Zariski-Van Kampen Theorem to these generators:

J

(o102:04—1) _ {gd =1

<

One obtains:

=9 979100 i#1
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Example

€ smooth of degree d = w1 (P2 \ C) = Z/dZ.
Applying the Zariski-Van Kampen Theorem to these generators:

>

One obtains:
_ (o1020g—1) _ ) Gd =1
=4 {g;1gf_1gd i#1
hence g» = g;‘g1gd = gy, and by induction g; = ... = gy = g. Finally, gy --- gy = 1
becomes g9 =

m(P2\C) =(g: g% = 1) = Z/dL.
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Example (Zariski-Harris, Cheniot)

C nodal = 1 (C) is abelian.
Cy and Cs intersect transversally = w1 (C) = 71(Cy) & m1(C2)

Remark (Harris)
The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski)

Let C be a general nodal rational curve of degree d. Consider C its dual. Note that C is
a rational curve of degree 2(d — 1), 2(d — 2)(d — 3) nodes, and 3(d — 2) cusps.

The fundamental group of € coincides with the fundamental group of the unordered
configuration space of d points in S, that is,

9i9j = 9;9i,
By(S?) = (g1, -, Ga—1: 9i9i+19i = 9i+19iGi+1, ).
g1 9d—295_19d-2---G1 =1
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m “Very” special fibers.
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Global Braid Monodromy

m Most difficult part of monodromy computations.
m Real arrangements, real curves.
m Computational methods are effective essentially over Z[v/—1].
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Consider the following quartic and project from [0 : 1 : 0]
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Compute the braid monodromy:
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Compute the braid monodromy: £, 05, o5 '} 'oa0y03.
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Compute the braid monodromy: £, 05, o5 '} 'oa0y03.
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0_8
9! = (%201 )*91(9291) ™ = [(9291)*, g1] =1

g5 ! = (9201 )*92(9201)~* = [(9201)*, g2] = 1
9% 1=

gy =04
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