Braid Monodromy Of Algebraic Plane Curves

José Ignacio COGOLLUDO-AGUSTÍN

Departamento de Matemáticas
Universidad de Zaragoza

Braids in Pau - October 5-8, 2009

Contents

1 Settings and Motivations

Contents

1 Settings and Motivations - Fundamental Groupoids

Contents

1 Settings and Motivations - Fundamental Groupoids - Van Kampen Theorem

Contents

1 Settings and Motivations - Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions

Contents

1 Settings and Motivations - Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method

- Fundamental Group of the Total Space of a Locally Trivial Fibration
- Zariski-Van Kampen Theorem

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method

- Fundamental Group of the Total Space of a Locally Trivial Fibration
- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

3 Braid Monodromy Representations - Definitions and First Properties

- The Homotopy Type

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements
- Wiring Diagrams

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings
- Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements
- Wiring Diagrams
- Conjugated Curves
- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$ where

$$
\gamma_{1} \sim \gamma_{2} \quad \Leftrightarrow \quad \exists h: I \times I \rightarrow X
$$

such that:

- $h(\lambda, 0)=\gamma_{1}(\lambda)$,
$h(\lambda, 1)=\gamma_{2}(\lambda)$
- $h(0, \mu)=x_{0}, h(1, \mu)=y_{0}$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$ where

$$
\gamma_{1} \sim \gamma_{2} \quad \Leftrightarrow \quad \exists h: I \times I \rightarrow X
$$

such that:
■ $h(\lambda, 0)=\gamma_{1}(\lambda)$,

- $h(\lambda, 1)=\gamma_{2}(\lambda)$,
- $h(0, \mu)=x_{0}, h(1, \mu)=y_{0}$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure: \square if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure: - if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure: - if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

- $1 \equiv x_{0} \in \pi_{1}\left(X, x_{0}, x_{0}\right)$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure: - if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

- $1 \equiv x_{0} \in \pi_{1}\left(X, x_{0}, x_{0}\right)$
- $\gamma^{-1}(\lambda)=\gamma(1-\lambda) \in \pi_{1}\left(X, y_{0}, x_{0}\right)$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
- $\pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.

Definition

■ $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
$\square \pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.

■ X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.

Definition

$\square \pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

■ $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
$\square \pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.

■ X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
$\square \pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.

■ X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.

- X connected $\Rightarrow \pi_{1}(X)$

Example
$\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}$.

Example

$\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}$.

Example (Ordered Configuration Spaces)

Let $X_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}, i \neq j\right\}$. Then $\pi_{1}\left(X_{n}\right)=\mathbb{P}_{n}$.

Example

$$
\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}
$$

Example (Ordered Configuration Spaces)

Let $X_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}, i \neq j\right\}$. Then $\pi_{1}\left(X_{n}\right)=\mathbb{P}_{n}$.

Example (Non-ordered Configuration Spaces)

Let $\mathcal{P}_{n}:=\{f(z) \in \mathbb{C}[z] \mid \operatorname{deg}(f)=n\}, Y_{n}:=\mathbb{P}\left(\mathcal{P}_{n} \backslash \Delta_{n}\right)$, where
$\Delta_{n}:=\left\{f \in \mathcal{P}_{n} \mid f\right.$ has multiple roots $\}$. Note that $Y_{n} \cong X_{n} / \Sigma_{n}$. Then $\pi_{1}\left(Y_{n}\right)=\mathbb{B}_{n}$. Analogously, if we consider $\overline{\mathcal{P}}_{n}:=\{f(s, t) \in \mathbb{C}[s, t] \mid f$ homogeneous $\operatorname{deg}(f)=n\}$, $\bar{Y}_{n}:=\mathbb{P}\left(\mathcal{P}_{n} \backslash \Delta_{n}\right)$, where $\bar{\Delta}_{n}:=\left\{f \in \overline{\mathcal{P}}_{n} \mid f\right.$ has multiple roots $\}$. Note that $\pi_{1}\left(\bar{Y}_{n}\right)=\mathbb{B}_{n}\left(\mathbb{S}^{2}\right)$.

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:

- $U_{1} \cup U_{2}=X$ and
- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:

- $U_{1} \cup U_{2}=X$ and
- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Example

$\pi_{1}\left(\mathbb{S}^{1} \vee \ldots \vee \mathbb{S}^{1}\right)=\mathbb{F}_{n}$.

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:

- $U_{1} \cup U_{2}=X$ and
- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Example

$$
\pi_{1}\left(\mathbb{S}^{1} \vee \ldots \vee \mathbb{S}^{1}\right)=\mathbb{F}_{n}
$$

Example

Let $z_{1}, \ldots, z_{n} \in \mathbb{C}, Z_{n}:=\left\{z_{1}, \ldots, z_{n}\right\}$. Then $\pi_{1}\left(\mathbb{C} \backslash Z_{n}\right)=\mathbb{F}_{n}$.

Locally trivial Fibrations

Definition

A surjective smooth map $\pi: X \rightarrow M$ of smooth manifolds is a locally trivial fibration if there is an open cover \mathcal{U} of M and diffeomorphisms $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \pi^{-1}\left(p_{U}\right)$, with $p_{U} \in U$, such that φ_{U} is fiber-preserving, that is $p r_{1} \varphi_{U}=\pi$. We denote $\pi^{-1}(p)$ by F_{p}.

Locally trivial Fibrations

Definition

A surjective smooth map $\pi: X \rightarrow M$ of smooth manifolds is a locally trivial fibration if there is an open cover \mathcal{U} of M and diffeomorphisms $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \pi^{-1}\left(p_{U}\right)$, with $p_{U} \in U$, such that φ_{U} is fiber-preserving, that is $p r_{1} \varphi_{U}=\pi$. We denote $\pi^{-1}(p)$ by F_{p}.

Consider $\pi: X \rightarrow M$ a locally trivial fibration and $s: M \rightarrow X$ a section. There is an action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)\left(s(p)=x_{0}\right)$ called monodromy action of M on F_{p}.

$$
\begin{array}{llll}
\pi^{-1}(\gamma)= & \left.\begin{array}{lll}
\tilde{X} & \hookrightarrow & X \\
& \downarrow \tilde{\pi} & \\
l & \xrightarrow{\downarrow} & M
\end{array}\right]
\end{array}
$$

Monodromy Actions

$$
\pi^{-1}(\gamma)=\begin{array}{lll}
\tilde{X} & \hookrightarrow & X \\
& \downarrow \tilde{\pi} & \\
I & & \downarrow \\
& & M
\end{array}
$$

The fibration $\tilde{\pi}$ is trivial, and hence there exists

$$
\varphi: I \times F_{p} \rightarrow \tilde{X}
$$

such that $\varphi(0, x)=I d_{F_{p}}$.
If π is such that F_{p} is connected, then given a loop $\alpha \in \pi_{1}\left(F_{p}, x_{0}\right)$ and a loop $\gamma \in \pi_{1}(M, p)$, then one deforms $\varphi(t, \alpha)$ into a loop $\alpha_{t} \in \Gamma\left(F_{\gamma(t)}, s(\gamma(t))\right)$. Then
$\alpha^{\gamma}:=\alpha_{1}$ is the monodromy action of γ over α.

Remark
Another interesting scenario occurs when F_{p} is finite and π is a topological cover. In that case $\varphi(1, x)$ induces a permutation of F_{p}. This permutation is also called the monodromy action of γ over F_{p}.

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma) \text {. }
$$

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Mapping Class Group

Theorem

There is an isomorphism between the geometric group of braids on n-strings and the mapping class group of automorphisms on the punctured disc $\mathbb{D}_{n}:=\mathbb{D} \backslash Z_{n}$ modulo homotopy relative to the boundary, that is, $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$.

Braid Action

Remarks

- The set $\pi_{0}\left(\right.$ Diff $\left.^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along / of locally trivial fibrations of fiber \mathbb{D}_{n}.

Braid Action

Remarks

- The set $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along / of locally trivial fibrations of fiber \mathbb{D}_{n}.
- This way, via monodromy, a braid in \mathbb{B}_{n} acts on $\pi_{1}\left(\mathbb{D}_{n}\right)=F_{n}=\mathbb{Z} g_{1} * \ldots * \mathbb{Z} g_{n}$ as follows (\downarrow :

$$
g_{j}^{\sigma_{i}}= \begin{cases}g_{i+1} & j=i \\ g_{i+1} g_{i} g_{i+1}^{-1} & j=i+1 \\ g_{i} & \text { otherwise }\end{cases}
$$

Braid Action

Remarks

- The set $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along / of locally trivial fibrations of fiber \mathbb{D}_{n}.
- This way, via monodromy, a braid in \mathbb{B}_{n} acts on $\pi_{1}\left(\mathbb{D}_{n}\right)=F_{n}=\mathbb{Z} g_{1} * \ldots * \mathbb{Z} g_{n}$ as follows (\downarrow):

$$
g_{j}^{\sigma_{i}}= \begin{cases}g_{i+1} & j=i \\ g_{i+1} g_{i} g_{i+1}^{-1} & j=i+1 \\ g_{i} & \text { otherwise }\end{cases}
$$

- Since $\left(g_{n} \cdot \ldots \cdot g_{1}\right)=\partial \mathbb{D}$, one obtains $\left(g_{n} \cdot \ldots \cdot g_{1}\right)^{\sigma}=\left(g_{n} \cdot \ldots \cdot g_{1}\right)$.

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

■ every fiber of π is discrete in X,

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,

■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,
- $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
■ $\pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,

■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
■ $\pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and

- $\forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,

■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
■ $\pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and

- $\forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:
i) $\pi^{-1}(p) \cap U=\{q\}$

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,

■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
■ $\pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and

- $\forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:
i) $\pi^{-1}(p) \cap U=\{q\}$
ii) $\left.\pi\right|_{U}: U \rightarrow W$ is surjective and proper.

Construction of branched coverings: smooth case
If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point.

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right)$.

Construction of branched coverings: smooth case
If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right) . G:=\pi_{1}\left(M \backslash B, p_{0}\right) / J$.

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right) . G:=\pi_{1}\left(M \backslash B, p_{0}\right) / J$.

Condition

$$
\text { If } \gamma_{j}^{d} \in J \text { then } d \equiv 0\left(\bmod e_{j}\right) \forall 1 \leq j \leq s .
$$

Theorem

There is a natural one-to-one correspondence between

$$
\begin{aligned}
\{\pi: & X \rightarrow M \text { Galois, finite, ramified along } D\} / \sim \\
& \left\{J \subset K^{f, j} \pi_{1}(M \backslash B) \text { satisfying (1.4) }\right\} .
\end{aligned}
$$

Moreover, there is a maximal Galois covering $\pi(M, D)$ of M ramified along D iff $K_{\pi}=\cap K^{\prime \prime \cdot}{ }^{\prime} \pi_{1}(M \backslash B)$ satisfies (1.4).

Construction of branched coverings: smooth case

Theorem (Riemann Existence Theorem)
Any monodromy action $\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}\right) \rightarrow \Sigma_{s}$ can be realized by a branched covering of the projective line \mathbb{P}^{1}.

Construction of branched coverings: general case
If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point.

Construction of branched coverings: general case
If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on $M . p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.

Construction of branched coverings: general case
If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on $M . p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.
$i: W^{\tilde{p}_{0}} \backslash B \hookrightarrow M \backslash B$.

Construction of branched coverings: general case

If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum e_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.
$i: W^{p_{0}} \backslash B \hookrightarrow M \backslash B$.

Condition

Let $K \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right)$ such that $J \triangleleft K$. For any point $p \in \operatorname{Sing} B$,
$K_{p}=i_{*}^{-1}(K){ }^{f_{i} \cdot j} \pi_{1}(W \backslash B, \tilde{p})$.

Theorem

There is a one-to-one correspondence:

$$
\begin{aligned}
& \{\pi: X \rightarrow M \text { Galois, finite, ramified along } D\} / \sim \\
& \left\{J \subset K^{f . j} \pi_{1}(M \backslash B) \text { satisfying (1.4) and (1.7) }\right\}
\end{aligned}
$$

Moreover, there is a maximal Galois covering $\pi(M, D)$ of M ramified along D iff $K_{\pi}=\cap K^{f \cdot \dot{f}} \pi_{1}(M \backslash B)$ satisfies (1.4) and (1.7).

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=x^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\text { Figure: } y^{2}=(x-y)^{3}
$$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\text { Figure: } y^{2}=(x-y)^{3}
$$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=(x-y)^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$\tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1$,

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\begin{aligned}
& \tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1, \\
& \tilde{\gamma}_{2}=\gamma_{2},
\end{aligned}
$$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\begin{aligned}
& \tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1 \\
& \tilde{\gamma}_{2}=\gamma_{2} \\
& \gamma_{2} \gamma_{1} \gamma_{2}=\gamma_{1} \gamma_{2} \gamma_{1}
\end{aligned}
$$

Theorem

In the following cases there is a maximal Galois covering of \mathbb{P}^{2} ramified along D :

$\left(e_{1}, e_{2}\right) \\|$	$G=\pi_{1}\left(\mathbb{P}^{2} \backslash D\right) / J$	$\|G\|$
$(2,2)$	Σ_{3}	6
$(3,4)$	$\\|$	$S L(2, \mathbb{Z} / 3 \mathbb{Z})$
$(4,8)$	$\|\mid$	$\Sigma_{4} \ltimes \mathbb{Z} / 4 \mathbb{Z}$
$(5,20)$	$\|\mid$	$S L(2, \mathbb{Z} / 5 \mathbb{Z}) \times \mathbb{Z} / 5 \mathbb{Z}$

Theorem

In the following cases there is a maximal Galois covering of \mathbb{P}^{2} ramified along D :

$\left(e_{1}, e_{2}\right)$	$G=\pi_{1}\left(\mathbb{P}^{2} \backslash D\right) / J$	$\|G\|$	
$(2,2)$	Σ_{3}	6	
$(3,4)$	$\\|$	$S L(2, \mathbb{Z} / 3 \mathbb{Z})$	
$(4,8)$	$\\|$	$\Sigma_{4} \ltimes \mathbb{Z} / 4 \mathbb{Z}$	
$(5,20)$	$\\|$	$S L(2, \mathbb{Z} / 5 \mathbb{Z}) \times \mathbb{Z} / 5 \mathbb{Z}$	

However, there is no maximal Galois cover of \mathbb{P}^{2} ramified along $D=6 D_{1}+2 D_{2}$.

Theorem
Let $B=D_{1} \cup \ldots \cup D_{n}$. Then any representation of $\pi_{1}(M \backslash B)$ on a linear group $G L(r, \mathbb{C})$ such that the image of a meridian γ_{i} has order e_{i}, gives rise to a Galois cover of M branched along $D=e_{1} D_{1}+\ldots+e_{n} D_{n}$.

■ If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.

■ If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.

- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?

Theorem (Hamm,Goreski-MacPherson)

Let $M \subset \mathbb{P}^{n}$ be a closed subvariety which is locally a complete intersection of dimension m. Let \mathcal{A} be a Whitney stratification of M and consider $B \subset \mathbb{P}^{n}$ another subvariety such that $B \cap M$ is a union of strata of \mathcal{A}. Consider H a hyperplane transversal to \mathcal{A} in $M \backslash B$, then the inclusion

$$
(M \backslash B) \cap H \hookrightarrow M \backslash B
$$

is an $(m-1)$-homotopy equivalence.

- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
- Zariski-Van Kampen method.
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
- Zariski-Van Kampen method.
- Chisini Problem:

Let S be a nonsingular compact complex surface, let $\pi: S \rightarrow \mathbb{P}^{2}$ be a finite morphism having simple branching, and let B be the branch curve; then "to what extent does the pair $\left(\mathbb{P}^{2}, B\right)$ determine π "?

