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B (X, X0, ¥0) == {7y € [(X, X0, ¥0)}/ ~

m 71(X, Xo, ¥o) has a groupoid structure.

m (X, Xp) := m (X, X0, Xo) has a group structure.

m X complex manifold = - can be considered Piecewise Smooth.

m X connected = 71(X)
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Example (Ordered Configuration Spaces)

Let Xp := {(21,...,2n) € C" | z; # Z;,i # j}. Then 71 (Xp) = Pp.

Example (Non-ordered Configuration Spaces)

Let Pp := {f(2) € C[z] | deg(f) = n}, Yn :=P(Pn \ An), where

Ap = {f € Pp | f has multiple roots}. Note that Y, = Xn/Xp. Then 1 (Yn) = Bn.
Analogously, if we consider P, := {f(s,t) € C[s, {] | f homogeneous deg(f) = n},
Yn :=B(Pn \ An), where Ap := {f € Py | f has multiple roots}. Note that

7T1(Yn) = Bn(S2)
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Van Kampen Theorem

Let Uy and U, open subsets of X such that:
m Uy U, =X and
m U;p := U; N Us is path-connected.
Then
m(X) = 71 (U1) %7y (uyp) ™1 (U2).

m(S'V ... vS") =TF,.

Letz1,...,zn € C, Zn :=={Z, ..., Zn}. Then 1(C \ Zn) = Fp.



Locally trivial Fibrations

Definition

A surjective smooth map = : X — M of smooth manifolds is a locally trivial fibration if
there is an open cover ¢ of M and diffeomorphisms ¢y : 7= 1(U) — U x == (py), with
pu € U, such that ¢y is fiber-preserving, that is prypy = 7. We denote 7—'(p) by Fp.



Locally trivial Fibrations

Definition

A surjective smooth map = : X — M of smooth manifolds is a locally trivial fibration if
there is an open cover ¢ of M and diffeomorphisms ¢y : 7= 1(U) — U x == (py), with
pu € U, such that ¢y is fiber-preserving, that is prypy = 7. We denote 7—'(p) by Fp.

Consider 7 : X — M a locally trivial fibration and s : M — X a section. There is an
action of 71 (M, p) on 71 (Fp, Xo) (S(P) = Xp) called monodromy action of M on Fp.
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Monodromy Actions

m(y) =

7

- X
T X

—

-,

The fibration 7 is trivial, and hence there exists
p:lxFp— X

such that ¢(0, x) = lde.

If 7 is such that Fp is connected, then given a loop « € 71(Fp, Xp) and a loop

v € m1(M, p), then one deforms (¢, o) into a loop a; € T(F, ), s(7(t)))- Then
oY := a4 is the monodromy action of v over .



Another interesting scenario occurs when F, is finite and « is a topological cover. In
that case ¢(1, x) induces a permutation of Fp. This permutation is also called the
monodromy action of v over Fp.
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Example

Let7m: X =M x F — M be a trivial fibration. Any continuous map w : M — F, defines
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= (wov) a(won).
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Example

Let7m: X =M x F — M be a trivial fibration. Any continuous map w : M — F, defines
s(x) = (x,w(x)) a section of = : X — M. In this case, ¢ is the identity. Let

v € m(M,p) and a € 71 (F, Xp), then o is given by (w¢ o )~ (wt o v), where

wt 0 y(A) = w(vy(At)). Therefore 71 (M, p) acts on 71 (F,w(p)) by

= (wov) a(won).

F

of = (azar) oy (azay)

ag = ar1a2a1
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Consider F as before, but now X is not trivial. The trivialization along - is not the
identity, but given as follows:

v
af =ap

Yo =il
a2 = a2a1a2



Mapping Class Group

There is an isomorphism between the geometric group of braids on n-strings and the
mapping class group of automorphisms on the punctured disc D, := D \ Z, modulo
homotopy relative to the boundary, that is, wo(Difft(Xn)).-



Braid Action

m The set mo(Diff(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp.
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m The set mo(Diff*(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp.
m This way, via monodromy, a braid in B, acts on w1 (Dp) = Fpn = Zgq * ... * Zgn as
follows (E):
git1 j=i
9 =3 9119ig,y i=i+1
gi otherwise.




Braid Action

m The set mo(Diff*(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp.

m This way, via monodromy, a braid in B, acts on w1 (Dp) = Fpn = Zgq * ... * Zgn as

follows (°):
Git1 j=i
9 =1{0110i0,, j=i+1
gi otherwise.

m Since (gn - ... - 91) = 9D, one obtains (gn - ... 91)° =(9n - .. - G1)-
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Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M
is an m-dimensional irreducible normal complex space X together with a surjective
holomorphic map = : X — M such that:

m every fiber of « is discrete in X,

B Rr:={q € X |7 : Orq),m — Ogxis not an isomorphism} called the
ramification locus, and B, = w(R;) called the branched locus, are hypersurfaces
of X and M, resp.

m 7| : X\ 7 "(Br) — M\ By is an unramified (topological) covering, and

m V p € M there is a connected open neighborhood WP C M such that for every
connected component U of =~ (W):

N« (p) N U={q}
i) 7|y : U— W is surjective and proper.
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Construction of branched coverings: smooth case

If Bis a non-singular hypersurface, B= D; U...U Dp, ey, ...,en € N, D =" e;D; on M.
po € M\ Bbase point. Let J = N('yf‘ s e am(M\ B, po). G:=m(M\ B, po)/J.

Condition

lf’yf’eJthendEO(modej)V1 <j<s.

Theorem

There is a natural one-to-one correspondence between
{m : X — M Galois, finite, ramified along D} / ~
{Jc K m(M\ g) satisfying (1.4)} .
Moreover, there is a maximal Galois covering =(M, D) of M ramified along D iff

Ky = NK 4 71 (M\ B) satisfies (1.4).




Construction of branched coverings: smooth case

Theorem (Riemann Existence Theorem)

Any monodromy action 71 (P! \ Z,) — Xs can be realized by a branched covering of
the projective line P!.
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Construction of branched coverings: general case

If Bis a hypersurface, B= Dy U ...U Dp, e1,...,.en € N,D= > eiDijon M. pg € M\ B
base point. Let K = m, (m1(X \ 7~ (B), %)), go € 7~ (o), p € Sing B.
i: WPo\ B— M\ B.

Condition

Let K am1(M\ B, po) such that J <« K. For any point p € Sing B,
Kp = i (K) 4 m(W\ B, p).

Theorem
There is a one-to-one correspondence:

{m : X — M Galois, finite, ramified along D} / ~
: )
{JC K 4 (M \ B) satisfying (1.4) and (1.7)} .
Moreover, there is a maximal Galois covering =(M, D) of M ramified along D iff

Ky = nK 4 (M \ B) satisfies (1.4) and (1.7).




Consider M = P2, D; = {zy? = x3}, D, = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e;D; + e;D5.
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Consider M = P2, D; = {zy? = x3}, D, = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e;D; + e;D5.

-

~4d|

y

JooF2v271 = 1,
Y2 = 72,
V2V = NV




In the following cases there is a maximal Galois covering of P? ramified along D:

| (er,e2) | G=m(@®*\D)/J | |G |

| (22) | s | 6 |
| (34) | SL2z/3z) | 24 |
| (48) || EZ4xz/4Z | 96

| (5,20) || SL(2,Z/5Z) x Z/5Z | 600




In the following cases there is a maximal Galois covering of P? ramified along D:

| (er,e2) | G=m(@®*\D)/J | |G |

| (22) | s | 6 |
| (34) | SL2z/3z) | 24 |
| (48) || EZ4xz/4Z | 96

| (5,20) || SL(2,Z/5Z) x Z/5Z | 600

However, there is no maximal Galois cover of P? ramified along D = 6Dy + 2D;.



Let B= Dy U ... U Dn. Then any representation of 71(M \ B) on a linear group
GL(r,C) such that the image of a meridian ~; has order e;, gives rise to a Galois cover
of M branched along D = e;D; + ... + enDn.



m If we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).
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m If we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).

m How to compute the fundamental group 71 (M \ B) of a quasi-projective variety?
Theorem (Hamm,Goreski-MacPherson)

Let M C P" be a closed subvariety which is locally a complete intersection of
dimension m. Let A be a Whitney stratification of M and consider B C P" another
subvariety such that BN M is a union of strata of A. Consider H a hyperplane
transversal to A in M \ B, then the inclusion

(M\B)NH— M\ B

is an (m — 1)-homotopy equivalence.
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surface.
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m If we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).

m How to compute the fundamental group 71 (M \ B) of a quasi-projective variety?

m It is enough to understand the fundamental group of complements of curves on a
surface.

m Zariski-Van Kampen method.

m Chisini Problem:
Let S be a nonsingular compact complex surface, let 7 : S — P2 be a finite
morphism having simple branching, and let B be the branch curve; then “to what
extent does the pair (P2, B) determine 7”?



