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π1(X , x0, y0) has a groupoid structure.
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X complex manifold ⇒ γ can be considered Piecewise Smooth.

X connected ⇒ π1(X)
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1) = Z.

Example (Ordered Configuration Spaces)

Let Xn := {(z1, ..., zn) ∈ C n | zi 6= zj , i 6= j}. Then π1(Xn) = Pn.

Example (Non-ordered Configuration Spaces)

Let Pn := {f (z) ∈ C [z] | deg(f ) = n}, Yn := P(Pn \ ∆n), where
∆n := {f ∈ Pn | f has multiple roots}. Note that Yn

∼= Xn/Σn. Then π1(Yn) = Bn.
Analogously, if we consider P̄n := {f (s, t) ∈ C [s, t] | f homogeneous deg(f ) = n},
Ȳn := P(Pn \ ∆n), where ∆̄n := {f ∈ P̄n | f has multiple roots}. Note that
π1(Ȳn) = Bn(S2).
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Van Kampen Theorem

Theorem

Let U1 and U2 open subsets of X such that:

U1 ∪ U2 = X and

U12 := U1 ∩ U2 is path-connected.

Then
π1(X) = π1(U1) ∗π1(U12) π1(U2).

Example

π1(S
1 ∨ ... ∨ S1) = Fn.

Example

Let z1, ..., zn ∈ C , Zn := {z1, ..., zn}. Then π1(C \ Zn) = Fn.
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A surjective smooth map π : X → M of smooth manifolds is a locally trivial fibration if
there is an open cover U of M and diffeomorphisms ϕU : π−1(U) → U ×π−1(pU), with
pU ∈ U, such that ϕU is fiber-preserving, that is pr1ϕU = π. We denote π−1(p) by Fp .
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Definition

A surjective smooth map π : X → M of smooth manifolds is a locally trivial fibration if
there is an open cover U of M and diffeomorphisms ϕU : π−1(U) → U ×π−1(pU), with
pU ∈ U, such that ϕU is fiber-preserving, that is pr1ϕU = π. We denote π−1(p) by Fp .

Consider π : X → M a locally trivial fibration and s : M → X a section. There is an
action of π1(M, p) on π1(Fp, x0) (s(p) = x0) called monodromy action of M on Fp .
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Monodromy Actions

π−1(γ) = X̃ →֒ X
↓ π̃ ↓ π

I
γ

−→ M

The fibration π̃ is trivial, and hence there exists

ϕ : I × Fp → X̃

such that ϕ(0, x) = IdFp
.

If π is such that Fp is connected, then given a loop α ∈ π1(Fp, x0) and a loop
γ ∈ π1(M, p), then one deforms ϕ(t , α) into a loop αt ∈ Γ(Fγ(t), s(γ(t))). Then
αγ := α1 is the monodromy action of γ over α.



Remark

Another interesting scenario occurs when Fp is finite and π is a topological cover. In
that case ϕ(1, x) induces a permutation of Fp . This permutation is also called the
monodromy action of γ over Fp .
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Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F
α2

α1



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F

αγ

1 = (α2α1)
−1α1(α2α1)

αγ

2 = α−1
1 α2α1
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Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the
identity, but given as follows:

αγ

1 = α2

αγ

2 = α2α1α−1
2



Mapping Class Group

Theorem

There is an isomorphism between the geometric group of braids on n-strings and the
mapping class group of automorphisms on the punctured disc Dn := D \ Zn modulo
homotopy relative to the boundary, that is, π0(Diff +(Xn)).



Braid Action

Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.
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Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.

This way, via monodromy, a braid in Bn acts on π1(Dn) = Fn = Zg1 ∗ ... ∗ Zgn as
follows ( ):

g
σi
j

=

8

>

<

>

:

gi+1 j = i

gi+1gi g
−1
i+1 j = i + 1

gi otherwise.



Braid Action

Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.

This way, via monodromy, a braid in Bn acts on π1(Dn) = Fn = Zg1 ∗ ... ∗ Zgn as
follows ( ):

g
σi
j

=

8

>

<

>

:

gi+1 j = i

gi+1gi g
−1
i+1 j = i + 1

gi otherwise.

Since (gn · ... · g1) = ∂D, one obtains (gn · ... · g1)
σ = (gn · ... · g1).
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Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M
is an m-dimensional irreducible normal complex space X together with a surjective
holomorphic map π : X → M such that:

every fiber of π is discrete in X ,

Rπ := {q ∈ X | π∗ : Oπ(q),M → Oq,X is not an isomorphism} called the
ramification locus, and Bπ = π(Rπ) called the branched locus, are hypersurfaces
of X and M, resp.

π| : X \ π−1(Bπ) → M \ Bπ is an unramified (topological) covering, and

∀ p ∈ M there is a connected open neighborhood W p ⊂ M such that for every
connected component U of π−1(W ):

i) π−1(p) ∩ U = {q}
ii) π|U : U → W is surjective and proper.



Construction of branched coverings: smooth case

If B is a non-singular hypersurface, B = D1 ∪ ...∪Dn, e1, ..., en ∈ N, D =
P

ei Di on M.
p0 ∈ M \ B base point.
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Construction of branched coverings: smooth case

If B is a non-singular hypersurface, B = D1 ∪ ...∪Dn, e1, ..., en ∈ N, D =
P

ei Di on M.
p0 ∈ M \ B base point. Let J = N(γ

e1
1 , ..., γen

n ) ⊳ π1(M \ B, p0). G := π1(M \ B, p0)/J.

Condition

If γd
j
∈ J then d ≡ 0 (mod ej ) ∀ 1 ≤ j ≤ s.

Theorem

There is a natural one-to-one correspondence between

{π : X → M Galois, finite, ramified along D} / ∼
l

{J ⊂ K
f .i
⊳ π1(M \ B) satisfying (1.4)} .

Moreover, there is a maximal Galois covering π(M, D) of M ramified along D iff
Kπ = ∩K

f .i
⊳ π1(M \ B) satisfies (1.4).



Construction of branched coverings: smooth case

Theorem (Riemann Existence Theorem)

Any monodromy action π1(P
1 \ Zn) → Σs can be realized by a branched covering of

the projective line P1.
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If B is a hypersurface, B = D1 ∪ ... ∪ Dn, e1, ..., en ∈ N, D =
P

ei Di on M. p0 ∈ M \ B
base point.
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Construction of branched coverings: general case

If B is a hypersurface, B = D1 ∪ ... ∪ Dn, e1, ..., en ∈ N, D =
P

ei Di on M. p0 ∈ M \ B
base point. Let K = π∗(π1(X \ π−1(B), q0)), q0 ∈ π−1(q0), p ∈ Sing B.
i : W p̃0 \ B →֒ M \ B.



Construction of branched coverings: general case

If B is a hypersurface, B = D1 ∪ ... ∪ Dn, e1, ..., en ∈ N, D =
P

ei Di on M. p0 ∈ M \ B
base point. Let K = π∗(π1(X \ π−1(B), q0)), q0 ∈ π−1(q0), p ∈ Sing B.
i : W p̃0 \ B →֒ M \ B.

Condition

Let K ⊳ π1(M \ B, p0) such that J ⊳ K . For any point p ∈ Sing B,

Kp = i−1
∗

(K )
f .i
⊳ π1(W \ B, p̃).

Theorem

There is a one-to-one correspondence:

{π : X → M Galois, finite, ramified along D} / ∼
l

{J ⊂ K
f .i
⊳ π1(M \ B) satisfying (1.4) and (1.7)} .

Moreover, there is a maximal Galois covering π(M, D) of M ramified along D iff
Kπ = ∩K

f .i
⊳ π1(M \ B) satisfies (1.4) and (1.7).
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Consider M = P2, D1 = {zy2 = x3}, D2 = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e1D1 + e2D2.

γ̃∞γ̃2γ2γ1 = 1,
γ̃2 = γ2,
γ2γ1γ2 = γ1γ2γ1.



Theorem

In the following cases there is a maximal Galois covering of P2 ramified along D:

(e1, e2) G = π1(P
2 \ D)/J |G|

(2, 2) Σ3 6

(3, 4) SL(2, Z/3Z) 24

(4, 8) Σ4 ⋉ Z/4Z 96

(5, 20) SL(2, Z/5Z) × Z/5Z 600



Theorem

In the following cases there is a maximal Galois covering of P2 ramified along D:

(e1, e2) G = π1(P
2 \ D)/J |G|

(2, 2) Σ3 6

(3, 4) SL(2, Z/3Z) 24

(4, 8) Σ4 ⋉ Z/4Z 96

(5, 20) SL(2, Z/5Z) × Z/5Z 600

However, there is no maximal Galois cover of P2 ramified along D = 6D1 + 2D2.



Theorem

Let B = D1 ∪ ... ∪ Dn. Then any representation of π1(M \ B) on a linear group
GL(r , C ) such that the image of a meridian γi has order ei , gives rise to a Galois cover
of M branched along D = e1D1 + ... + enDn.
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If we want to understand coverings of M ramified along D one needs to study
π1(M \ B).

How to compute the fundamental group π1(M \ B) of a quasi-projective variety?

Theorem (Hamm,Goreski-MacPherson)

Let M ⊂ Pn be a closed subvariety which is locally a complete intersection of
dimension m. Let A be a Whitney stratification of M and consider B ⊂ Pn another
subvariety such that B ∩ M is a union of strata of A. Consider H a hyperplane
transversal to A in M \ B, then the inclusion

(M \ B) ∩ H →֒ M \ B

is an (m − 1)-homotopy equivalence.
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If we want to understand coverings of M ramified along D one needs to study
π1(M \ B).

How to compute the fundamental group π1(M \ B) of a quasi-projective variety?

It is enough to understand the fundamental group of complements of curves on a
surface.

Zariski-Van Kampen method.

Chisini Problem:
Let S be a nonsingular compact complex surface, let π : S → P2 be a finite
morphism having simple branching, and let B be the branch curve; then “to what
extent does the pair (P2, B) determine π”?


