Hilden braid groups

Alessia Cattabriga (Università di Bologna)

joint work with

Paolo Bellingeri (Université de Caen)

preprint is available at arXiv: 0909.4845v1

Hilden groups

Let $\mathcal{A}_{n}=A_{1} \cup \cdots \cup A_{n}$ be system of trivial arcs
and $\quad \mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right)=\left\{P_{i, 1}, P_{i, 2} \mid i=1, \ldots, n\right\}$.
Consider the injective homomorphism

$$
\begin{aligned}
\operatorname{MCG}_{n}\left(\mathbf{B}^{3}\right)= & \pi_{0}\left(\operatorname{Homeo}\left(\mathbf{B}^{3}, \mathcal{A}_{n}\right)\right) \\
& \downarrow R_{n}
\end{aligned}
$$

$$
\operatorname{MCG}_{2 n}\left(\mathbb{S}^{2}\right)=\pi_{0}\left(\operatorname{Homeo}\left(\mathbb{S}^{2}, \mathcal{P}_{2 n}\right)\right)
$$

The Hilden group Hil_{n} on n arcs is the group $\operatorname{mm} R_{n}$.

$$
\text { Theorem[Hilden, 1975] A set of generators for } \mathrm{Hil}_{n} \text { is given by }
$$

Hilden groups

Let $\mathcal{A}_{n}=A_{1} \cup \cdots \cup A_{n}$ be system of trivial arcs and $\quad \mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right)=\left\{P_{i, 1}, P_{i, 2} \mid i=1, \ldots, n\right\}$.

Consider the injective homomorphism

$$
\begin{aligned}
\operatorname{MCG}_{n}\left(\mathbf{B}^{3}\right)= & \pi_{0}\left(\operatorname{Homeo}\left(\mathbf{B}^{3}, \mathcal{A}_{n}\right)\right) \\
& \downarrow R_{n}
\end{aligned}
$$

$$
\operatorname{MCG}_{2 n}\left(\mathbb{S}^{2}\right)=\pi_{0}\left(\operatorname{Homeo}\left(\mathbb{S}^{2}, \mathcal{P}_{2 n}\right)\right)
$$

The Hilden group Hil_{n} on n arcs is the group $\operatorname{mm} R_{n}$.
Theorem[Hilden, 1975] A set of generators for Hil_{n} is given by

1) the twist of the i-th arc, for $i=1, \ldots, n$;

Hilden groups

Let $\mathcal{A}_{n}=A_{1} \cup \cdots \cup A_{n}$ be system of trivial arcs and $\mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right)=\left\{P_{i, 1}, P_{i, 2} \mid i=1, \ldots, n\right\}$.

Consider the injective homomorphism

$$
\begin{aligned}
\operatorname{MCG}_{n}\left(\mathbf{B}^{3}\right)= & \pi_{0}\left(\operatorname{Homeo}\left(\mathbf{B}^{3}, \mathcal{A}_{n}\right)\right) \\
& \downarrow R_{n}
\end{aligned}
$$

$$
\operatorname{MCG}_{2 n}\left(\mathbb{S}^{2}\right)=\pi_{0}\left(\operatorname{Homeo}\left(\mathbb{S}^{2}, \mathcal{P}_{2 n}\right)\right)
$$

The Hilden group Hil_{n} on n arcs is the group $\operatorname{mm} R_{n}$.
Theorem[Hilden, 1975] A set of generators for Hil_{n} is given by

1) the twist of the i-th arc, for $i=1, \ldots, n$;
2) the exchange of the i-th and $(i+1)$-th arc, for $i=1, \ldots, n-1$;

Hilden groups

Let $\mathcal{A}_{n}=A_{1} \cup \cdots \cup A_{n}$ be system of trivial arcs and $\quad \mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right)=\left\{P_{i, 1}, P_{i, 2} \mid i=1, \ldots, n\right\}$.

Consider the injective homomorphism

$$
\begin{aligned}
\operatorname{MCG}_{n}\left(\mathbf{B}^{3}\right)= & \pi_{0}\left(\text { Homeo }\left(\mathbf{B}^{3}, \mathcal{A}_{n}\right)\right) \\
& \downarrow R_{n}
\end{aligned}
$$

$$
\operatorname{MCG}_{2 n}\left(\mathbb{S}^{2}\right)=\pi_{0}\left(\operatorname{Homeo}\left(\mathbb{S}^{2}, \mathcal{P}_{2 n}\right)\right)
$$

The Hilden group Hil_{n} on n arcs is the group $\operatorname{mm} R_{n}$.
Theorem[Hilden, 1975] A set of generators for Hil_{n} is given by

1) the twist of the i-th arc, for $i=1, \ldots, n$;
2) the exchange of the i-th and $(i+1)$-th arc, for $i=1, \ldots, n-1$;
3) the slide of the i-th arc over the j-th arc $i, j=1, \ldots, n$ and $i \neq j$;

Hilden groups

Let $\mathcal{A}_{n}=A_{1} \cup \cdots \cup A_{n}$ be system of trivial arcs and $\mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right)=\left\{P_{i, 1}, P_{i, 2} \mid i=1, \ldots, n\right\}$.

Consider the injective homomorphism

$$
\begin{aligned}
\operatorname{MCG}_{n}\left(\mathbf{B}^{3}\right)= & \pi_{0}\left(\text { Homeo }\left(\mathbf{B}^{3}, \mathcal{A}_{n}\right)\right) \\
& \downarrow R_{n}
\end{aligned}
$$

$$
\operatorname{MCG}_{2 n}\left(\mathbb{S}^{2}\right)=\pi_{0}\left(\text { Homeo(}\left(\mathbb{S}^{2}, \mathcal{P}_{2 n}\right)\right)
$$

The Hilden group Hil_{n} on n arcs is the group $\operatorname{mm} R_{n}$.
Theorem[Hilden, 1975] A set of generators for Hil_{n} is given by

1) the twist of the i-th arc, for $i=1, \ldots, n$;
2) the exchange of the i-th and $(i+1)$-th arc, for $i=1, \ldots, n-1$;
3) the slide of the i-th arc over the j-th arc $i, j=1, \ldots, n$ and $i \neq j$;
4) the slide of the i-th arc between the j-th and $(j+1)$-th arc, for $i=1, \ldots, n, j=1, \ldots, n-1$ and $i \neq j$.

Theorem[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $\mathrm{B}_{2 n}=\mathrm{MCG}_{2 n}\left(\mathbf{D}^{2}\right)$ that admit an extension to the couple $\left(\mathbb{R}^{+}, \mathcal{A}_{n}\right)$.
Using this presentation it is possible to obtain a presentation for Hil_{n} adding the relations corresponding to the kernel of the surjection from $\mathrm{PMCG}_{2 n}\left(\mathbf{D}^{2}\right) \longrightarrow \mathrm{PMCG}_{2 n}\left(\mathbb{S}^{2}\right)$.

Theorem[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $\mathrm{B}_{2 n}=\mathrm{MCG}_{2 n}\left(\mathbf{D}^{2}\right)$ that admit an extension to the couple $\left(\mathbb{R}^{+}, \mathcal{A}_{n}\right)$.
Using this presentation it is possible to obtain a presentation for Hil_{n} adding the relations corresponding to the kernel of the surjection from $\mathrm{PMCG}_{2 n}\left(\mathbf{D}^{2}\right) \longrightarrow \mathrm{PMCG}_{2 n}\left(\mathbb{S}^{2}\right)$.
\rightarrow Representing link in \mathbb{S}^{3} or \mathbb{R}^{3} via plat closure
Theorem[Birman, 1974] Two braids $\sigma_{1} \in \mathrm{~B}_{2 n_{1}}$ and $\sigma_{2} \in \mathrm{~B}_{2 n_{2}}$ have equivalent plat closure if and only if they are connected by a finite sequence of the following moves

1) $\sigma \leftrightarrow h_{1} \sigma h_{2}, \sigma \in \mathrm{~B}_{2 n}, h_{i} \in \mathrm{Hil}_{n}$, for $i=1,2$;
2) $\sigma \leftrightarrow \sigma \sigma_{2 n} \sigma \in \mathrm{~B}_{2 n}, \sigma \sigma_{2 n} \in \mathrm{~B}_{2 n+2}$.

- In [Hilden, 1975] it is described how to associate to each element a given $\sigma \in \mathrm{MCG}_{2 n}{ }^{\left(\mathbb{S}^{2}\right)}$.
- In [Brendle, Hatcher, 2008] the authors analyze the case of the n-component trivial link.

Theorem[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $\mathrm{B}_{2 n}=\mathrm{MCG}_{2 n}\left(\mathbf{D}^{2}\right)$ that admit an extension to the couple $\left(\mathbb{R}^{+}, \mathcal{A}_{n}\right)$.
Using this presentation it is possible to obtain a presentation for Hil_{n} adding the relations corresponding to the kernel of the surjection from $\mathrm{PMCG}_{2 n}\left(\mathbf{D}^{2}\right) \longrightarrow \mathrm{PMCG}_{2 n}\left(\mathbb{S}^{2}\right)$.
\rightarrow Representing link in \mathbb{S}^{3} or \mathbb{R}^{3} via plat closure
Theorem[Birman, 1974] Two braids $\sigma_{1} \in \mathrm{~B}_{2 n_{1}}$ and $\sigma_{2} \in \mathrm{~B}_{2 n_{2}}$ have equivalent plat closure if and only if they are connected by a finite sequence of the following moves

1) $\sigma \leftrightarrow h_{1} \sigma h_{2}, \sigma \in \mathrm{~B}_{2 n}, h_{i} \in \mathrm{Hil}_{n}$, for $i=1,2$;
2) $\sigma \leftrightarrow \sigma \sigma_{2 n} \sigma \in \mathrm{~B}_{2 n}, \sigma \sigma_{2 n} \in \mathrm{~B}_{2 n+2}$.
\rightarrow Motion groups of links in \mathbb{S}^{3}

- In [Hilden, 1975] it is described how to associate to each element $\sigma \in \mathrm{Hil}_{n} \cap\left(\sigma^{-1} \mathrm{Hil}_{n} \sigma\right)$ a motion of the link that is the plat closure of a given $\sigma \in \mathrm{MCG}_{2 n}\left(\mathbb{S}^{2}\right)$.
- In [Brendle, Hatcher, 2008] the authors analyze the case of the n-component trivial link.

A generalization: Hilden braid groups

Let H_{g} be a genus g handlebody and $\mathrm{T}_{g}=\partial \mathrm{H}_{g}$. As before, let \mathcal{A}_{n} be system of trivial arcs and $\mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right) \subset \mathrm{T}_{g}$. Consider

$$
\begin{array}{cr}
\operatorname{MCG}_{n}\left(\mathrm{H}_{g}\right) \xrightarrow{\bar{\Omega}_{g, n}} \mathrm{MCG}\left(\mathrm{H}_{g}\right) \\
R_{g, n} \downarrow & \downarrow{ }^{\left(R_{g, 0}\right.} \\
\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \xrightarrow{\Omega_{g, n}} \operatorname{MCG}\left(\mathrm{~T}_{g}\right) .
\end{array}
$$

The Hilden braid group Hi_{n}^{g} of genus g on n arcs is the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ given by ker $\Omega_{g, n} \cap ı R_{g, n}$.

Theorem[Birman, 1974] If $g \geq 2$, the group $\operatorname{ker} \Omega_{g, n}$ is isomorphic to $\mathrm{B}_{2 n}\left(\mathrm{~T}_{\mathrm{g}}\right)$.

A generalization: Hilden braid groups

Let H_{g} be a genus g handlebody and $\mathrm{T}_{g}=\partial \mathrm{H}_{g}$. As before, let \mathcal{A}_{n} be system of trivial arcs and $\mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right) \subset \mathrm{T}_{g}$. Consider

$$
\begin{array}{cr}
\operatorname{MCG}_{n}\left(\mathrm{H}_{g}\right) \xrightarrow{\bar{\Omega}_{g, n}} & \mathrm{MCG}\left(\mathrm{H}_{g}\right) \\
R_{g, n} \downarrow & \\
\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \xrightarrow{R_{g, 0}} \\
& \Omega_{g, n} \\
\mathrm{MCG}\left(\mathrm{~T}_{g}\right) .
\end{array}
$$

The Hilden braid group Hil_{n}^{g} of genus g on n arcs is the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ given by ker $\Omega_{g, n} \cap ı R_{g, n}$.

Theorem[Birman, 1974] If $g \geq 2$, the group $\operatorname{ker} \Omega_{g, n}$ is isomorphic to $\mathrm{B}_{2 n}\left(\mathrm{~T}_{g}\right)$.

A generalization: Hilden braid groups

Let H_{g} be a genus g handlebody and $\mathrm{T}_{g}=\partial \mathrm{H}_{g}$. As before, let \mathcal{A}_{n} be system of trivial arcs and $\mathcal{P}_{2 n}=\partial\left(\mathcal{A}_{n}\right) \subset \mathrm{T}_{g}$. Consider

$$
\begin{array}{cr}
\mathrm{MCG}_{n}\left(\mathrm{H}_{g}\right) \xrightarrow{\bar{\Omega}_{g, n}} \mathrm{MCG}\left(\mathrm{H}_{g}\right) \\
R_{g, n} \downarrow & \downarrow R_{g, 0} \\
\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \xrightarrow{\Omega_{g, n}} \operatorname{MCG}\left(\mathrm{~T}_{g}\right) .
\end{array}
$$

The Hilden braid group Hil ${ }_{n}^{g}$ of genus g on n arcs is the subgroup of $\mathrm{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$ given by ker $\Omega_{g, n} \cap ı R_{g, n}$.

Theorem[Birman, 1974] If $g \geq 2$, the group ker $\Omega_{g, n}$ is isomorphic to $\mathrm{B}_{2 n}\left(\mathrm{~T}_{g}\right)$.

Theorem[C.,Mulazzani, 2008] Finite set of generators for $1 m R_{g, n}$.

Generalized plat closure

Let M be a closed, connected, orientable 3-manifold and let $\psi \in \operatorname{MCG}\left(\mathrm{T}_{g, 1}\right)$ be a fixed element such that

$$
M=\mathrm{H}_{g} \cup_{\tau \psi_{0}} \overline{\mathrm{H}}_{g}
$$

where $\tau: \mathrm{H}_{g} \rightarrow \overline{\mathrm{H}}_{g}$ is a fixed identification between two copies of H_{g} and ψ_{0} is the image of ψ under the surjective homomorphism
$\operatorname{MCG}\left(\mathrm{T}_{g, 1}\right) \rightarrow \operatorname{MCG}\left(\mathrm{T}_{g}\right)$.
Recall that $\Omega_{n, g}: \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \operatorname{MCG}\left(\mathrm{T}_{g}\right)$.
The generalized plat closure of the couple (M, ψ) is

$$
\Theta_{\mathrm{g}, n}^{\psi}: \operatorname{ker} \Omega_{g, n} \longrightarrow\{\text { links in } M\} \quad \Theta_{g, n}^{\psi}(\sigma)=\hat{\sigma}^{\psi}
$$

where

$\bar{A}_{i}=\tau\left(A_{i}\right)$ and ψ_{n} is the image of ψ under the injective homomorphism $\operatorname{MCG}\left(\mathrm{T}_{g, 1}\right) \hookrightarrow \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$.

Generalized plat closure

Let M be a closed, connected, orientable 3-manifold and let $\psi \in \operatorname{MCG}\left(\mathrm{T}_{g, 1}\right)$ be a fixed element such that

$$
M=\mathrm{H}_{g} \cup_{\tau \psi_{0}} \overline{\mathrm{H}}_{g}
$$

where $\tau: \mathrm{H}_{g} \rightarrow \overline{\mathrm{H}}_{g}$ is a fixed identification between two copies of H_{g} and ψ_{0} is the image of ψ under the surjective homomorphism
$\operatorname{MCG}\left(\mathrm{T}_{g, 1}\right) \rightarrow \operatorname{MCG}\left(\mathrm{T}_{g}\right)$.
Recall that $\Omega_{n, g}: \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right) \rightarrow \operatorname{MCG}\left(\mathrm{T}_{g}\right)$.
The generalized plat closure of the couple (M, ψ) is

$$
\Theta_{\mathrm{g}, n}^{\psi}: \operatorname{ker} \Omega_{g, n} \longrightarrow\{\text { links in } M\} \quad \Theta_{g, n}^{\psi}(\sigma)=\hat{\sigma}^{\psi}
$$

where

$$
\hat{\sigma}^{\psi}=\left(A_{1} \cup \cdots \cup A_{n}\right) \cup_{\tau \psi_{n} \sigma}\left(\bar{A}_{1} \cup \cdots \cup \bar{A}_{n}\right),
$$

$\bar{A}_{i}=\tau\left(A_{i}\right)$ and ψ_{n} is the image of ψ under the injective homomorphism $\operatorname{MCG}\left(\mathrm{T}_{g, 1}\right) \hookrightarrow \operatorname{MCG}_{2 n}\left(\mathrm{~T}_{g}\right)$.

Proposition[Bellingeri, C.] For each link L in M there exist $n \in \mathbb{N}$ and $\sigma \in \operatorname{ker} \Omega_{g, n}$ such that $L=\hat{\sigma}^{\psi}$. Moreover

1) if σ_{1} and σ_{2} belong to the same left coset of $\operatorname{Hil}_{n}^{g}$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then ${\hat{\sigma_{1}}}^{\psi}$ and ${\hat{\sigma_{2}}}^{\psi}$ are equivalent links.
2) if σ_{1} and σ_{2} belong to the same right coset of $\operatorname{Hil}_{n}^{g}(\psi)$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then ${\hat{\sigma_{1}}}^{\psi}$ and ${\hat{\sigma_{2}}}^{\psi}$ are equivalent links, where $\operatorname{Hil}_{n}^{g}(\psi)=\psi^{-1} \mathrm{Hil}_{n}^{g} \psi$. Open problem Find the equivalence moves under generalized plat closure.

Proposition[Bellingeri, C.] For each link L in M there exist $n \in \mathbb{N}$ and $\sigma \in \operatorname{ker} \Omega_{g, n}$ such that $L=\hat{\sigma}^{\psi}$. Moreover

1) if σ_{1} and σ_{2} belong to the same left coset of $\operatorname{Hi}{ }_{n}^{g}$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then $\hat{\sigma}_{1}{ }^{\psi}$ and $\hat{\sigma}_{2}{ }^{\psi}$ are equivalent links.
2) if σ_{1} and σ_{2} belong to the same right coset of $\operatorname{Hi}_{n}^{g}(\psi)$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then ${\hat{\sigma_{1}}}^{\psi}$ and $\hat{\sigma_{2}}{ }^{\psi}$ are equivalent links, where $\mathrm{Hil}_{n}^{g}(\psi)=\psi^{-1} \mathrm{Hi}_{n}^{g} \psi$.

Proposition[Bellingeri, C.] For each link L in M there exist $n \in \mathbb{N}$ and $\sigma \in \operatorname{ker} \Omega_{g, n}$ such that $L=\hat{\sigma}^{\psi}$. Moreover

1) if σ_{1} and σ_{2} belong to the same left coset of $\operatorname{Hi}{ }_{n}^{g}$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then ${\hat{\sigma_{1}}}^{\psi}$ and $\hat{\sigma}_{2}{ }^{\psi}$ are equivalent links.
2) if σ_{1} and σ_{2} belong to the same right coset of $\left.\operatorname{Hi}\right|_{n} ^{g}(\psi)$ in $\operatorname{ker}\left(\Omega_{g, n}\right)$ then ${\hat{\sigma_{1}}}^{\psi}$ and $\hat{\sigma_{2}}{ }^{\psi}$ are equivalent links, where $\mathrm{Hi}_{n}^{g}(\psi)=\psi^{-1} \mathrm{Hi}_{n}^{g} \psi$.
Open problem Find the equivalence moves under generalized plat closure.

Motion groups

A motion of a submanifold N in a closed manifold M is a path f_{t} in Homeo (M) such that $f_{0}=\mathrm{id}_{M}$ and $f_{1}(N)=N$. A motion is called stationary if $f_{t}(N)=N$ for all $t \in[0,1]$. The motion $\operatorname{group} \mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_{t}, g_{t} are equivalent if $\left(g^{-1} f\right)_{t}$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the n-component trivial link and all the torus links in \mathbb{S}^{3} can be found in [Goldsmith, 1981-1982].

Motion groups

A motion of a submanifold N in a closed manifold M is a path f_{t} in Homeo (M) such that $f_{0}=\operatorname{id}_{M}$ and $f_{1}(N)=N$. A motion is called stationary if $f_{t}(N)=N$ for all $t \in[0,1]$. The motion group $\mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_{t}, g_{t} are equivalent if $\left(g^{-1} f\right)_{t}$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the n-component trivial link and all the torus links in \mathbb{S}^{3} can be found in [Goldsmith, 1981-1982].

Theorem[Bellingeri, C.] Let (M, ψ) as above. For each $\sigma \in \operatorname{ker} \Omega_{g, n}$, there exists a group homomorphism, that we call the Hilden map $\mathcal{H}_{\psi \sigma}: \mathrm{Hil}_{n}^{g} \cap \mathrm{Hi}_{n}^{g}(\psi \sigma) \rightarrow \mathcal{M}\left(M_{\psi}, \hat{\sigma}^{\psi}\right)$.

Corollary Let $M=\mathbb{S}^{3}$. The homomorphism $\mathcal{H}_{\psi}: \mathrm{Hil}_{n}^{g} \cap \mathrm{Hil}_{n}^{g}(\psi) \rightarrow \mathcal{M}\left(\mathbb{S}^{3}, L_{n}\right)$ is surjective. Moreover, it is injective if and only if $(g, n)=(0,1)$.

3-manifold different from \mathbb{S}^{3}.

Motion groups

A motion of a submanifold N in a closed manifold M is a path f_{t} in Homeo (M) such that $f_{0}=\operatorname{id}_{M}$ and $f_{1}(N)=N$. A motion is called stationary if $f_{t}(N)=N$ for all $t \in[0,1]$. The motion $\operatorname{group} \mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_{t}, g_{t} are equivalent if $\left(g^{-1} f\right)_{t}$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the n-component trivial link and all the torus links in \mathbb{S}^{3} can be found in [Goldsmith, 1981-1982].

Theorem[Bellingeri, C.] Let (M, ψ) as above. For each $\sigma \in \operatorname{ker} \Omega_{g, n}$, there exists a group homomorphism, that we call the Hilden map $\mathcal{H}_{\psi \sigma}: \mathrm{Hil}_{n}^{g} \cap \mathrm{Hi}_{n}^{g}(\psi \sigma) \rightarrow \mathcal{M}\left(M_{\psi}, \hat{\sigma}^{\psi}\right)$.

Corollary Let $M=\mathbb{S}^{3}$. The homomorphism $\mathcal{H}_{\psi}: \mathrm{Hil}_{n}^{g} \cap \mathrm{Hil}_{n}^{g}(\psi) \rightarrow \mathcal{M}\left(\mathbb{S}^{3}, L_{n}\right)$ is surjective. Moreover, it is injective if and only if $(g, n)=(0,1)$.
Open problem Find generators for the motion groups of a links in a 3-manifold different from \mathbb{S}^{3}.

generators of Hil ${ }_{n}^{g}$

Theorem[Bellingeri, C.] The group Hil_{n}^{g} is generated by

1) the twist of the fist arc and the exchange of the j-th and $(j+1)$-th arcs with $j=1, \ldots, n-1$;
2) the slides of the first arc along the curves $\mu_{1, j,}, \lambda_{1, j,}, \sigma_{1, r}$ with $k=1, \ldots, g$ and $r=1, \ldots n$;
3) all the admissible slides of the meridian discs.

generators of Hil ${ }_{n}^{g}$

Theorem[Bellingeri, C.] The group Hil_{n}^{g} is generated by

1) the twist of the fist arc and the exchange of the j-th and $(j+1)$-th arcs with $j=1, \ldots, n-1$;
2) the slides of the first arc along the curves $\mu_{1, j}, \lambda_{1, j}, \sigma_{1, r}$ with $k=1, \ldots, g$ and $r=1, \ldots n$;
3) all the admissible slides of the meridian discs.

The slide $S_{i, C}=T_{C_{1}}^{-1} T_{C_{2}} s_{i}$ of the i-th arc along the curve C.

generators of Hil ${ }_{n}^{g}$

Theorem[Bellingeri, C.] The group Hil_{n}^{g} is generated by

1) the twist of the fist arc and the exchange of the j-th and $(j+1)$-th arcs with $j=1, \ldots, n-1$;
2) the slides of the first arc along the curves $\mu_{1, j}, \lambda_{1, j}, \sigma_{1, r}$ with $k=1, \ldots, g$ and $r=1, \ldots n$;
3) all the admissible slides of the meridian discs.

GENERATORS OF Hil ${ }_{n}^{g}$

Theorem[Bellingeri, C.] The group Hil_{n}^{g} is generated by

1) the twist of the fist arc and the exchange of the j-th and $(j+1)$-th arcs with $j=1, \ldots, n-1$;
2) the slides of the first arc along the curves $\mu_{1, j}, \lambda_{1, j}, \sigma_{1, r}$ with $k=1, \ldots, g$ and $r=1, \ldots n$;
3) all the admissible slides of the meridian discs.

The slide $M_{i, C}=T_{C_{1}}^{-1} T_{C_{2}} T_{b_{i}}^{-1}$ of the meridian disk B_{i} along the curve C.

GENERATORS OF Hil ${ }_{n}^{g}$

Theorem[Bellingeri, C.] The group Hi_{n}^{g} is generated by

1) the twist of the fist arc and the exchange of the j-th and $(j+1)$-th arcs with $j=1, \ldots, n-1$;
2) the slides of the first arc along the curves $\mu_{1, j}, \lambda_{1, j}, \sigma_{1, r}$ with $k=1, \ldots, g$ and $r=1, \ldots n$;
3) all the admissible slides of the meridian discs.

If $g=1$ all the sliding curves for the meridian discs are admissible, so Hil_{n}^{1} is finitely generated.

Open problem Is Hil ${ }_{n}^{g}$ finitely generated for $g \geq 2$?

Thanks!

Gracias!

$\mathrm{c} \pi \mathrm{acH} \sigma$ 。!

Grazie!
Merci!

Danke!

