Tresses in Pau - 6 October 2009

HILDEN BRAID GROUPS

Alessia Cattabriga (Università di Bologna)

joint work with

Paolo Bellingeri (Université de Caen)

preprint is available at arXiv: 0909.4845v1

$$MCG_{2n}(\mathbb{S}^2) = \pi_0(Homeo(\mathbb{S}^2, \mathcal{P}_{2n}))$$

The *Hilden group* Hil_n on *n* arcs is the group $\operatorname{im} R_n$.

THEOREM[Hilden, 1975] A set of generators for Hil_n is given by

1) the *twist* of the *i*-th arc, for i = 1, ..., n;

2) the exchange of the *i*-th and (i + 1)-th arc, for i = 1, ..., n - 1;

- 3) the *slide* of the *i*-th arc over the *j*-th arc i, j = 1, ..., n and $i \neq j$;
- 4) the *slide* of the *i*-th arc between the *j*-th and (j + 1)-th arc, for i = 1, ..., n, j = 1, ..., n-1 and $i \neq j$.

$$MCG_{2n}(\mathbb{S}^2) = \pi_0(Homeo(\mathbb{S}^2, \mathcal{P}_{2n}))$$

The *Hilden group* Hil_n on n arcs is the group $\operatorname{im} R_n$.

THEOREM[Hilden, 1975] A set of generators for Hil_n is given by

- 1) the *twist* of the *i*-th arc, for i = 1, ..., n;
- 2) the exchange of the *i*-th and (i + 1)-th arc, for i = 1, ..., n 1;
- 3) the *slide* of the *i*-th arc over the *j*-th arc i, j = 1, ..., n and $i \neq j$;
- 4) the *slide* of the *i*-th arc between the *j*-th and (j + 1)-th arc, for i = 1, ..., n, j = 1, ..., n-1 and $i \neq j$.

$$MCG_{2n}(\mathbb{S}^2) = \pi_0(Homeo(\mathbb{S}^2, \mathcal{P}_{2n}))$$

The *Hilden group* Hil_n on n arcs is the group $\operatorname{im} R_n$.

THEOREM[Hilden, 1975] A set of generators for Hil_n is given by

- 1) the *twist* of the *i*-th arc, for i = 1, ..., n;
- 2) the exchange of the *i*-th and (i + 1)-th arc, for i = 1, ..., n 1;

3) the *slide* of the *i*-th arc over the *j*-th arc i, j = 1, ..., n and $i \neq j$;

4) the *slide* of the *i*-th arc between the *j*-th and (j + 1)-th arc, for i = 1, ..., n, j = 1, ..., n-1 and $i \neq j$.

$$\mathsf{MCG}_{2n}(\mathbb{S}^2) = \pi_0(\mathsf{Homeo}(\mathbb{S}^2, \mathcal{P}_{2n}))$$

The *Hilden group* Hil_n on n arcs is the group $\operatorname{im} R_n$.

THEOREM[Hilden, 1975] A set of generators for Hil_n is given by

- 1) the *twist* of the *i*-th arc, for i = 1, ..., n;
- 2) the exchange of the *i*-th and (i + 1)-th arc, for i = 1, ..., n 1;
- 3) the *slide* of the *i*-th arc over the *j*-th arc *i*, *j* = 1,..., *n* and *i* ≠ *j*;
 4) the *slide* of the *i*-th arc between the *j*-th and (*j* + 1)-th arc, for

$$MCG_{2n}(\mathbb{S}^2) = \pi_0(Homeo(\mathbb{S}^2, \mathcal{P}_{2n}))$$

The *Hilden group* Hil_n on n arcs is the group $\operatorname{im} R_n$.

THEOREM[Hilden, 1975] A set of generators for Hil_n is given by

- 1) the *twist* of the *i*-th arc, for i = 1, ..., n;
- 2) the exchange of the *i*-th and (i + 1)-th arc, for i = 1, ..., n 1;
- 3) the *slide* of the *i*-th arc over the *j*-th arc i, j = 1, ..., n and $i \neq j$;
- 4) the *slide* of the *i*-th arc between the *j*-th and (j + 1)-th arc, for i = 1, ..., n, j = 1, ..., n-1 and $i \neq j$.

THEOREM[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $B_{2n} = MCG_{2n}(\mathbf{D}^2)$ that admit an extension to the couple $(\mathbb{R}^+, \mathcal{A}_n)$.

Using this presentation it is possible to obtain a presentation for Hil_n adding the relations corresponding to the kernel of the surjection from $\operatorname{PMCG}_{2n}(\mathbf{D}^2) \longrightarrow \operatorname{PMCG}_{2n}(\mathbb{S}^2)$.

--> Representing link in \mathbb{S}^3 or \mathbb{R}^3 via plat closure

THEOREM[Birman, 1974] Two braids $\sigma_1 \in B_{2n_1}$ and $\sigma_2 \in B_{2n_2}$ have equivalent plat closure if and only if they are connected by a finite sequence of the following moves

- 1) $\sigma \leftrightarrow h_1 \sigma h_2$, $\sigma \in \mathsf{B}_{2n}$, $h_i \in \mathsf{Hil}_n$, for i = 1, 2;
- 2) $\sigma \leftrightarrow \sigma \sigma_{2n} \ \sigma \in \mathsf{B}_{2n}, \ \sigma \sigma_{2n} \in \mathsf{B}_{2n+2}.$

--+ Motion groups of links in \mathbb{S}^3

- ▶ In [Hilden, 1975] it is described how to associate to each element $\sigma \in \operatorname{Hil}_n \cap (\sigma^{-1}\operatorname{Hil}_n \sigma)$ a motion of the link that is the plat closure of a given $\sigma \in \operatorname{MCG}_{2n}(\mathbb{S}^2)$.
- In [Brendle, Hatcher, 2008] the authors analyze the case of the n-component trivial link.

THEOREM[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $B_{2n} = MCG_{2n}(\mathbf{D}^2)$ that admit an extension to the couple $(\mathbb{R}^+, \mathcal{A}_n)$.

Using this presentation it is possible to obtain a presentation for Hil_n adding the relations corresponding to the kernel of the surjection from $\operatorname{PMCG}_{2n}(\mathbf{D}^2) \longrightarrow \operatorname{PMCG}_{2n}(\mathbb{S}^2)$.

--- Representing link in \mathbb{S}^3 or \mathbb{R}^3 via plat closure

THEOREM[Birman, 1974] Two braids $\sigma_1 \in B_{2n_1}$ and $\sigma_2 \in B_{2n_2}$ have equivalent plat closure if and only if they are connected by a finite sequence of the following moves

1) $\sigma \leftrightarrow h_1 \sigma h_2$, $\sigma \in \mathsf{B}_{2n}$, $h_i \in \mathsf{Hil}_n$, for i = 1, 2;

2)
$$\sigma \leftrightarrow \sigma \sigma_{2n} \ \sigma \in \mathsf{B}_{2n}, \ \sigma \sigma_{2n} \in \mathsf{B}_{2n+2}.$$

--→ Motion groups of links in S³

- ▶ In [Hilden, 1975] it is described how to associate to each element $\sigma \in \operatorname{Hil}_n \cap (\sigma^{-1}\operatorname{Hil}_n \sigma)$ a motion of the link that is the plat closure of a given $\sigma \in \operatorname{MCG}_{2n}(\mathbb{S}^2)$.
- In [Brendle, Hatcher, 2008] the authors analyze the case of the n-component trivial link.

THEOREM[Tawn, 2008] A finite presentation for the Hilden groups of the disk, that is the elements of $B_{2n} = MCG_{2n}(\mathbf{D}^2)$ that admit an extension to the couple $(\mathbb{R}^+, \mathcal{A}_n)$.

Using this presentation it is possible to obtain a presentation for Hil_n adding the relations corresponding to the kernel of the surjection from $\operatorname{PMCG}_{2n}(\mathbf{D}^2) \longrightarrow \operatorname{PMCG}_{2n}(\mathbb{S}^2)$.

--- Representing link in \mathbb{S}^3 or \mathbb{R}^3 via plat closure

THEOREM[Birman, 1974] Two braids $\sigma_1 \in B_{2n_1}$ and $\sigma_2 \in B_{2n_2}$ have equivalent plat closure if and only if they are connected by a finite sequence of the following moves

1) $\sigma \leftrightarrow h_1 \sigma h_2$, $\sigma \in \mathsf{B}_{2n}$, $h_i \in \mathsf{Hil}_n$, for i = 1, 2;

2)
$$\sigma \leftrightarrow \sigma \sigma_{2n} \ \sigma \in \mathsf{B}_{2n}, \ \sigma \sigma_{2n} \in \mathsf{B}_{2n+2}.$$

--- Motion groups of links in \mathbb{S}^3

- ▶ In [Hilden, 1975] it is described how to associate to each element $\sigma \in \operatorname{Hil}_n \cap (\sigma^{-1}\operatorname{Hil}_n \sigma)$ a motion of the link that is the plat closure of a given $\sigma \in \operatorname{MCG}_{2n}(\mathbb{S}^2)$.
- In [Brendle, Hatcher, 2008] the authors analyze the case of the n-component trivial link.

A GENERALIZATION: HILDEN BRAID GROUPS

Let H_g be a genus g handlebody and $T_g = \partial H_g$. As before, let \mathcal{A}_n be system of trivial arcs and $\mathcal{P}_{2n} = \partial(\mathcal{A}_n) \subset T_g$. Consider

$$\begin{array}{ccc} \mathsf{MCG}_n(\mathsf{H}_g) & \xrightarrow{\bar{\Omega}_{g,n}} & \mathsf{MCG}(\mathsf{H}_g) \\ R_{g,n} & & & & \downarrow R_{g,0} \\ \\ \mathsf{MCG}_{2n}(\mathsf{T}_g) & \xrightarrow{\Omega_{g,n}} & \mathsf{MCG}(\mathsf{T}_g). \end{array}$$

The *Hilden braid group* Hil_n^g of genus g on n arcs is the subgroup of $MCG_{2n}(T_g)$ given by $\ker \Omega_{g,n} \cap \operatorname{Im} R_{g,n}$.

THEOREM[Birman, 1974] If $g \ge 2$, the group ker $\Omega_{g,n}$ is isomorphic to $B_{2n}(T_g)$.

THEOREM[C., Mulazzani, 2008] Finite set of generators for $Im R_{g,n}$.

A GENERALIZATION: HILDEN BRAID GROUPS

Let H_g be a genus g handlebody and $T_g = \partial H_g$. As before, let \mathcal{A}_n be system of trivial arcs and $\mathcal{P}_{2n} = \partial(\mathcal{A}_n) \subset T_g$. Consider

$$\begin{array}{ccc} \mathsf{MCG}_n(\mathsf{H}_g) & \xrightarrow{\bar{\Omega}_{g,n}} & \mathsf{MCG}(\mathsf{H}_g) \\ R_{g,n} & & & & \downarrow R_{g,0} \\ \\ \mathsf{MCG}_{2n}(\mathsf{T}_g) & \xrightarrow{\Omega_{g,n}} & \mathsf{MCG}(\mathsf{T}_g). \end{array}$$

The *Hilden braid group* Hil_n^g of genus g on n arcs is the subgroup of $MCG_{2n}(T_g)$ given by $\ker \Omega_{g,n} \cap \operatorname{Im} R_{g,n}$.

THEOREM[Birman, 1974] If $g \ge 2$, the group ker $\Omega_{g,n}$ is isomorphic to $B_{2n}(T_g)$.

THEOREM[C., Mulazzani, 2008] Finite set of generators for $\operatorname{Im} R_{g,n}$.

A GENERALIZATION: HILDEN BRAID GROUPS

Let H_g be a genus g handlebody and $T_g = \partial H_g$. As before, let \mathcal{A}_n be system of trivial arcs and $\mathcal{P}_{2n} = \partial(\mathcal{A}_n) \subset T_g$. Consider

$$\begin{array}{ccc} \mathsf{MCG}_n(\mathsf{H}_g) & \xrightarrow{\bar{\Omega}_{g,n}} & \mathsf{MCG}(\mathsf{H}_g) \\ R_{g,n} & & & & \downarrow R_{g,0} \\ \\ \mathsf{MCG}_{2n}(\mathsf{T}_g) & \xrightarrow{\Omega_{g,n}} & \mathsf{MCG}(\mathsf{T}_g). \end{array}$$

The *Hilden braid group* Hil_n^g of genus g on n arcs is the subgroup of $MCG_{2n}(T_g)$ given by $\ker \Omega_{g,n} \cap \operatorname{Im} R_{g,n}$.

THEOREM[Birman, 1974] If $g \ge 2$, the group ker $\Omega_{g,n}$ is isomorphic to $B_{2n}(T_g)$.

THEOREM[C., Mulazzani, 2008] Finite set of generators for $Im R_{g,n}$.

GENERALIZED PLAT CLOSURE

Let *M* be a closed, connected, orientable 3-manifold and let $\psi \in MCG(T_{g,1})$ be a fixed element such that

$$\mathsf{M} = \mathsf{H}_{\mathsf{g}} \cup_{ au \psi_0} ar{\mathsf{H}}_{\mathsf{g}}$$

where $\tau : H_g \to \overline{H}_g$ is a fixed identification between two copies of H_g and ψ_0 is the image of ψ under the surjective homomorphism $MCG(T_{g,1}) \twoheadrightarrow MCG(T_g)$.

Recall that $\Omega_{n,g}$: MCG_{2n}(T_g) \rightarrow MCG(T_g).

The *generalized plat closure* of the couple (M,ψ) is

$$\Theta_{g,n}^{\psi}$$
: ker $\Omega_{g,n} \longrightarrow \{$ links in $M\} \quad \Theta_{g,n}^{\psi}(\sigma) = \hat{\sigma}^{\psi}$

where

$$\hat{\sigma}^{\psi} = (A_1 \cup \cdots \cup A_n) \cup_{\tau \psi_n \sigma} (\bar{A}_1 \cup \cdots \cup \bar{A}_n),$$

 $\overline{A}_i = \tau(A_i)$ and ψ_n is the image of ψ under the injective homomorphism $MCG(T_{g,1}) \hookrightarrow MCG_{2n}(T_g).$

GENERALIZED PLAT CLOSURE

Let *M* be a closed, connected, orientable 3-manifold and let $\psi \in MCG(T_{g,1})$ be a fixed element such that

$$\mathsf{M}=\mathsf{H}_{\mathsf{g}}\cup_{ au\psi_0}ar{\mathsf{H}}_{\mathsf{g}}$$

where $\tau : H_g \to \bar{H}_g$ is a fixed identification between two copies of H_g and ψ_0 is the image of ψ under the surjective homomorphism $MCG(T_{g,1}) \twoheadrightarrow MCG(T_g)$.

Recall that $\Omega_{n,g} : MCG_{2n}(T_g) \rightarrow MCG(T_g).$

The generalized plat closure of the couple (M, ψ) is

$$\Theta_{g,n}^{\psi}$$
: ker $\Omega_{g,n} \longrightarrow \{$ links in $M\} \quad \Theta_{g,n}^{\psi}(\sigma) = \hat{\sigma}^{\psi}$

where

$$\hat{\sigma}^{\psi} = (A_1 \cup \cdots \cup A_n) \cup_{\tau \psi_n \sigma} (\bar{A}_1 \cup \cdots \cup \bar{A}_n),$$

 $\bar{A}_i = \tau(A_i)$ and ψ_n is the image of ψ under the injective homomorphism $MCG(T_{g,1}) \hookrightarrow MCG_{2n}(T_g)$.

PROPOSITION[Bellingeri, C.] For each link *L* in *M* there exist $n \in \mathbb{N}$ and $\sigma \in \ker \Omega_{g,n}$ such that $L = \hat{\sigma}^{\psi}$. Moreover

1) if σ_1 and σ_2 belong to the same left coset of Hil_n^g in $\ker(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links.

2) if σ_1 and σ_2 belong to the same right coset of $\operatorname{Hil}_n^g(\psi)$ in $\ker(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links, where $\operatorname{Hil}_n^g(\psi) = \psi^{-1} \operatorname{Hil}_n^g \psi$. OPEN PROBLEM Find the equivalence moves under generalized plat closure.

PROPOSITION[Bellingeri, C.] For each link *L* in *M* there exist $n \in \mathbb{N}$ and $\sigma \in \ker \Omega_{g,n}$ such that $L = \hat{\sigma}^{\psi}$. Moreover

- 1) if σ_1 and σ_2 belong to the same left coset of Hil_n^g in ker $(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links.
- 2) if σ_1 and σ_2 belong to the same right coset of $\operatorname{Hil}_n^g(\psi)$ in ker $(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links, where $\operatorname{Hil}_n^g(\psi) = \psi^{-1}\operatorname{Hil}_n^g\psi$.

OPEN PROBLEM Find the equivalence moves under generalized plat closure.

PROPOSITION[Bellingeri, C.] For each link *L* in *M* there exist $n \in \mathbb{N}$ and $\sigma \in \ker \Omega_{g,n}$ such that $L = \hat{\sigma}^{\psi}$. Moreover

- 1) if σ_1 and σ_2 belong to the same left coset of Hil_n^g in ker $(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links.
- 2) if σ_1 and σ_2 belong to the same right coset of $\operatorname{Hil}_n^g(\psi)$ in $\ker(\Omega_{g,n})$ then $\hat{\sigma_1}^{\psi}$ and $\hat{\sigma_2}^{\psi}$ are equivalent links, where $\operatorname{Hil}_n^g(\psi) = \psi^{-1}\operatorname{Hil}_n^g\psi$. OPEN PROBLEM Find the equivalence moves under generalized plat closure.

MOTION GROUPS

A motion of a submanifold N in a closed manifold M is a path f_t in Homeo(M) such that $f_0 = id_M$ and $f_1(N) = N$. A motion is called stationary if $f_t(N) = N$ for all $t \in [0, 1]$. The motion group $\mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_t, g_t are equivalent if $(g^{-1}f)_t$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the *n*-component trivial link and all the torus links in \mathbb{S}^3 can be found in [Goldsmith, 1981-1982].

THEOREM[Bellingeri, C.] Let (M, ψ) as above. For each $\sigma \in \ker \Omega_{g,n}$, there exists a group homomorphism, that we call the *Hilden map* $\mathcal{H}_{\psi\sigma}$: $\operatorname{Hil}_{n}^{g} \cap \operatorname{Hil}_{n}^{g}(\psi\sigma) \to \mathcal{M}(M_{\psi}, \hat{\sigma}^{\psi}).$

COROLLARY Let $M = \mathbb{S}^3$. The homomorphism $\mathcal{H}_{\psi} : \operatorname{Hil}_n^g \cap \operatorname{Hil}_n^g(\psi) \to \mathcal{M}(\mathbb{S}^3, L_n)$ is surjective. Moreover, it is injective if and only if (g, n) = (0, 1).

OPEN PROBLEM Find generators for the motion groups of a links in a 3-manifold different from S^3 .

MOTION GROUPS

A motion of a submanifold N in a closed manifold M is a path f_t in Homeo(M) such that $f_0 = id_M$ and $f_1(N) = N$. A motion is called stationary if $f_t(N) = N$ for all $t \in [0, 1]$. The motion group $\mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_t, g_t are equivalent if $(g^{-1}f)_t$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the *n*-component trivial link and all the torus links in \mathbb{S}^3 can be found in [Goldsmith, 1981-1982].

THEOREM[Bellingeri, C.] Let (M, ψ) as above. For each $\sigma \in \ker \Omega_{g,n}$, there exists a group homomorphism, that we call the *Hilden map* $\mathcal{H}_{\psi\sigma} : \operatorname{Hil}_{n}^{g} \cap \operatorname{Hil}_{n}^{g}(\psi\sigma) \to \mathcal{M}(M_{\psi}, \hat{\sigma}^{\psi}).$

COROLLARY Let $M = \mathbb{S}^3$. The homomorphism $\mathcal{H}_{\psi} : \operatorname{Hil}_n^g \cap \operatorname{Hil}_n^g(\psi) \to \mathcal{M}(\mathbb{S}^3, L_n)$ is surjective. Moreover, it is injective if and only if (g, n) = (0, 1).

OPEN PROBLEM Find generators for the motion groups of a links in a 3-manifold different from S^3 .

MOTION GROUPS

A motion of a submanifold N in a closed manifold M is a path f_t in Homeo(M) such that $f_0 = id_M$ and $f_1(N) = N$. A motion is called stationary if $f_t(N) = N$ for all $t \in [0, 1]$. The motion group $\mathcal{M}(M, N)$ of N in M is the group of equivalence classes of motion of N in M where two motions f_t, g_t are equivalent if $(g^{-1}f)_t$ is homotopic, relative to endpoints, to a stationary motion.

Generators for the motion group of the *n*-component trivial link and all the torus links in \mathbb{S}^3 can be found in [Goldsmith, 1981-1982].

THEOREM[Bellingeri, C.] Let (M, ψ) as above. For each $\sigma \in \ker \Omega_{g,n}$, there exists a group homomorphism, that we call the *Hilden map* $\mathcal{H}_{\psi\sigma} : \operatorname{Hil}_{n}^{g} \cap \operatorname{Hil}_{n}^{g}(\psi\sigma) \to \mathcal{M}(M_{\psi}, \hat{\sigma}^{\psi}).$

COROLLARY Let $M = \mathbb{S}^3$. The homomorphism $\mathcal{H}_{\psi} : \operatorname{Hil}_n^g \cap \operatorname{Hil}_n^g(\psi) \to \mathcal{M}(\mathbb{S}^3, L_n)$ is surjective. Moreover, it is injective if and only if (g, n) = (0, 1).

OPEN PROBLEM Find generators for the motion groups of a links in a 3-manifold different from S^3 .

THEOREM[Bellingeri, C.] The group Hil_n^g is generated by

- 1) the twist of the fist arc and the exchange of the *j*-th and (j + 1)-th arcs with j = 1, ..., n 1;
- 2) the *slides* of the first arc along the curves $\mu_{1,j}$, $\lambda_{1,j}$, $\sigma_{1,r}$ with $k = 1, \ldots, g$ and $r = 1, \ldots, n$;
- 3) all the *admissible* slides of the meridian discs.

THEOREM[Bellingeri, C.] The group Hil_n^g is generated by

- 1) the twist of the fist arc and the exchange of the *j*-th and (j + 1)-th arcs with j = 1, ..., n 1;
- 2) the *slides* of the first arc along the curves $\mu_{1,j}$, $\lambda_{1,j}$, $\sigma_{1,r}$ with $k = 1, \ldots, g$ and $r = 1, \ldots, n$;
- 3) all the *admissible* slides of the meridian discs.

The slide $S_{i,C} = T_{C_1}^{-1} T_{C_2} s_i$ of the *i*-th arc along the curve *C*.

THEOREM[Bellingeri, C.] The group Hil_n^g is generated by

- 1) the twist of the fist arc and the exchange of the *j*-th and (j + 1)-th arcs with j = 1, ..., n 1;
- 2) the *slides* of the first arc along the curves $\mu_{1,j}$, $\lambda_{1,j}$, $\sigma_{1,r}$ with $k = 1, \ldots, g$ and $r = 1, \ldots, n$;
- 3) all the *admissible* slides of the meridian discs.

THEOREM[Bellingeri, C.] The group Hil_n^g is generated by

- 1) the twist of the fist arc and the exchange of the *j*-th and (j + 1)-th arcs with j = 1, ..., n 1;
- 2) the *slides* of the first arc along the curves $\mu_{1,j}$, $\lambda_{1,j}$, $\sigma_{1,r}$ with $k = 1, \ldots, g$ and $r = 1, \ldots n$;
- 3) all the *admissible* slides of the meridian discs.

The slide $M_{i,C} = T_{C_1}^{-1} T_{C_2} T_{b_i}^{-1}$ of the meridian disk B_i along the curve C.

THEOREM[Bellingeri, C.] The group Hil_n^g is generated by

- 1) the twist of the fist arc and the exchange of the *j*-th and (j + 1)-th arcs with j = 1, ..., n 1;
- 2) the *slides* of the first arc along the curves $\mu_{1,j}$, $\lambda_{1,j}$, $\sigma_{1,r}$ with $k = 1, \ldots, g$ and $r = 1, \ldots, n$;
- 3) all the *admissible* slides of the meridian discs.

If g = 1 all the sliding curves for the meridian discs are admissible, so Hil¹_n is finitely generated.

OPEN PROBLEM Is Hil_n^g finitely generated for $g \ge 2$?

Gracias!

с π асн σ о!

Grazie!

Merci!

Danke!