<u>R. Glèlè Kakaï</u>¹, R. Palm²

¹ Faculty of Agronomic Sciences, University of Abomey-Calavi, Bénin ² Gembloux Agricultural University, Belgique

Email : gleleromain@yahoo.fr

Let $\mathbf{Y}(\mathbf{\mu}, \mathbf{\Sigma})$ denote a multivariate population with mean vector $\mathbf{\mu}$ and covariance matrix $\mathbf{\Sigma}$. For two groups, we consider an heteroscedastic model constituted of $\mathbf{Y}_1(\mathbf{0}, \mathbf{I})$ and $\mathbf{Y}_2(\mathbf{m}, \mathbf{V})$ where $\mathbf{m} = (m_1, 0, ..., 0)$ and \mathbf{V} , a diagonal matrix of vector \mathbf{v} of p diagonal elements so that $\mathbf{v}_{ii} = \lambda$ (>0) for i=1,...,k and $\mathbf{v}_{ii}=1$ for i=k+1, ..., p ($k \le p$). This simple model allows, by linear transformations, to extend the results of discriminant analysis studies to a large variety of real world problems. To control the heteroscedasticity of the model, a parameter Γ is considered and defined, for two covariances matrices $\mathbf{\Sigma}_1$ and $\mathbf{\Sigma}_2$, as $\Gamma = -\sum_{i=1}^{2} \ln (|\mathbf{\Sigma}_i|/|\mathbf{\Sigma}|)$, where $\mathbf{\Sigma}$ is the pooled covariance matrix of the model. In the case of the populations $\mathbf{Y}_1(\mathbf{0},\mathbf{I})$ and $\mathbf{Y}_2(\mathbf{m},\mathbf{V})$ or their linear transformations, we show analytically that the parameter Γ can be expressed as a function of k and λ . Γ is considered as a measure of heteroscedasticity of the discriminant model and some attractive properties of the function $\Gamma(\lambda, k)$ are given. We discuss also about the choice of m_1 and Γ values for the sampling scheme related to Monte Carlo discriminant analysis studies. Since it is possible to compute Γ on data samples, the results of Monte Carlo studies related to discriminant

analysis can be expressed as a function of the heteroscedasticity observed on the data

samples.