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Mathematical Framework

2D : stationary incompressible Navier-Stokes eqs.
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Mathematical Framework

2D : stationary incompressible Navier-Stokes eqs.

Boundary conditions:





u · n = 0 , u · t = 0 on Γ1

p̃ + 1
2u · u = p0 , u · t = 0 on Γ2

u · n = 0 , ω = ω0 on Γ3

with ω = curlu the scalar vorticity
(see also Conca et al . IJNMF ’95, Dubois M3AS ’02)
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Mathematical Framework

2D : stationary incompressible Navier-Stokes eqs.

Boundary conditions:





u · n = 0 , u · t = 0 on Γ1

p̃ + 1
2u · u = p0 , u · t = 0 on Γ2

u · n = 0 , ω = ω0 on Γ3

with ω = curlu the scalar vorticity
(see also Conca et al . IJNMF ’95, Dubois M3AS ’02)

Amara, Capatina and Trujillo Math. Comp. ’07 :

Three-fields formulation in (u, ω, p) thanks to :

u.∇u = ωu⊥ +
1

2
∇(u · u)
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Mathematical Framework

From now on : Ω ⊂ R
3 connected bounded polyhedron.

Stationary incompressible Navier-Stokes equations
{

−ν∆u + u.∇u + ∇p̃ = f in Ω,

divu = 0 in Ω.
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Mathematical Framework

We take: f ∈ L
4

3 (Ω), ω0 = 0, p0 = 0 and |Γ2| > 0.
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Mathematical Framework

We take: f ∈ L
4

3 (Ω), ω0 = 0, p0 = 0 and |Γ2| > 0.

Dynamic pressure: p = p̃ + 1
2u · u Vorticity: ω = curl u

By means of the relation : u · ∇u + ∇p̃ = ∇p + ω × u,

the system becomes:





νcurlω + ∇p + ω × u = f in Ω,

ω = curl u in Ω,

divu = 0 in Ω.
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Mathematical Framework

We take: f ∈ L
4

3 (Ω), ω0 = 0, p0 = 0 and |Γ2| > 0.

Dynamic pressure: p = p̃ + 1
2u · u Vorticity: ω = curl u

By means of the relation : u · ∇u + ∇p̃ = ∇p + ω × u,

the system becomes:





νcurlω + ∇p + ω × u = f in Ω,

ω = curl u in Ω,

divu = 0 in Ω.

Unknowns:

vector fields: u, ω

scalar field: p.
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The linear Stokes operator

Associated Stokes problem :





νcurlω + ∇p = g in Ω,

ω = curlu in Ω,

divu = 0 in Ω,
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The linear Stokes operator

Associated Stokes problem :





νcurlω + ∇p = g in Ω,

ω = curlu in Ω,

divu = 0 in Ω,

Boundary conditions





u · n = 0 , u × n = 0 on Γ1,

p = 0 , u × n = 0 on Γ2,

u · n = 0 , ω × n = 0 on Γ3.
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The linear Stokes operator

Associated Stokes problem :





νcurlω + ∇p = g in Ω,

ω = curlu in Ω,

divu = 0 in Ω,

Boundary conditions





u · n = 0 , u × n = 0 on Γ1,

p = 0 , u × n = 0 on Γ2,

u · n = 0 , ω × n = 0 on Γ3.

Hypothesis: g ∈ L
4

3 (Ω) .
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The linear Stokes operator

Mixed variational formulation:




Find (σ,u) ∈ X × M such that

a(σ, τ) + b(τ,u) = 0 ∀τ ∈ X,

b(σ,v) = −l(v) ∀v ∈ M,
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The linear Stokes operator

Mixed variational formulation:




Find (σ,u) ∈ X × M such that

a(σ, τ) + b(τ,u) = 0 ∀τ ∈ X,

b(σ,v) = −l(v) ∀v ∈ M,

for all σ = (ω, p), τ = (θ, q) ∈ X and v ∈ M :

a(σ, τ) = ν

∫

Ω
ω.θdΩ,

b(τ,v) = −ν

∫

Ω
θ.curlvdΩ +

∫

Ω
qdivvdΩ,

l(v) =

∫

Ω
g.vdΩ.

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 6/48



The linear Stokes operator

The following Hilbert spaces are employed :

M = {v ∈ H(div, curl; Ω); v·n|Γ1∪Γ3
= 0,v×n|Γ1∪Γ2

= 0},
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The linear Stokes operator

The following Hilbert spaces are employed :

M = {v ∈ H(div, curl; Ω); v·n|Γ1∪Γ3
= 0,v×n|Γ1∪Γ2

= 0},

X = L2(Ω) × L2(Ω),

where

H(div, curl; Ω) = {v ∈ L2(Ω); divv ∈ L2(Ω), curlv ∈ L2(Ω)}.

H(div, curl; Ω) and M are both normed by

‖v‖
M

= (‖v‖2
0,Ω + ‖divv‖2

0,Ω + ‖curlv‖2
0,Ω)1/2.
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The linear Stokes operator

We introduce |v|
M

= (‖divv‖2
0,Ω + ‖curlv‖2

0,Ω)1/2.
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The linear Stokes operator

We introduce |v|
M

= (‖divv‖2
0,Ω + ‖curlv‖2

0,Ω)1/2.

We assume that:
• |·|

M
is equivalent to the norm ‖·‖

M
in M,
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The linear Stokes operator

We introduce |v|
M

= (‖divv‖2
0,Ω + ‖curlv‖2

0,Ω)1/2.

We assume that:
• |·|

M
is equivalent to the norm ‖·‖

M
in M,

• M is compactly imbedded in Lp(Ω), p > 4
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The linear Stokes operator

We introduce |v|
M

= (‖divv‖2
0,Ω + ‖curlv‖2

0,Ω)1/2.

We assume that:
• |·|

M
is equivalent to the norm ‖·‖

M
in M,

• M is compactly imbedded in Lp(Ω), p > 4

• the traces of the elements of M belong to L2(Γ).
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The linear Stokes operator

We introduce |v|
M

= (‖divv‖2
0,Ω + ‖curlv‖2

0,Ω)1/2.

We assume that:
• |·|

M
is equivalent to the norm ‖·‖

M
in M,

• M is compactly imbedded in Lp(Ω), p > 4

• the traces of the elements of M belong to L2(Γ).

Last two assumptions hold if : M ⊂ Hs(Ω), 3
4 < s ≤ 1

(in 2D, we can prove : M ⊂ Hs(Ω) with 1
2 < s ≤ 1)
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The linear Stokes operator

Continuous linear Stokes operator S defined by:

S : L4/3(Ω) → X × L4(Ω)

g 7→ S(g) = (σ,u).
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The linear Stokes operator

Babuška-Brezzi:




find (σ,u) ∈ X × M such that

a(σ, τ) + b(τ,u) = 0 ∀τ ∈ X,

b(σ,v) = −l(v) ∀v ∈ M,

admits a unique solution if:

inf
v∈M\{0}

sup
σ∈X

b(σ,v)

||v||M||σ||X
≥ γ > 0
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The linear Stokes operator

Babuška-Brezzi:




find (σ,u) ∈ X × M such that

a(σ, τ) + b(τ,u) = 0 ∀τ ∈ X,

b(σ,v) = −l(v) ∀v ∈ M,

admits a unique solution if:

inf
v∈M\{0}

sup
σ∈X

b(σ,v)

||v||M||σ||X
≥ γ > 0

a(., .) is V−elliptic, where

V = {τ ∈ X; b(τ,v) = 0,∀v ∈ M}

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 10/48



The nonlinear Navier-Stokes operator

We introduce the nonlinear operator

G : X × L4(Ω) → L4/3(Ω)

G(τ,v) = θ × v, where τ = (θ, q).
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The nonlinear Navier-Stokes operator

We introduce the nonlinear operator

G : X × L4(Ω) → L4/3(Ω)

G(τ,v) = θ × v, where τ = (θ, q).

Navier-Stokes equations:

F (σ,u) = 0,

where F is defined by :

F : X × L4(Ω) → X × L4(Ω)

F (τ,v) = (τ,v) − S(f − G(τ,v)).
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The nonlinear Navier-Stokes operator

We assume that there exists a solution (σ,u) such that:

F (σ,u) = 0 and DF (σ,u) is an isomorphism on X×L4(Ω),
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The nonlinear Navier-Stokes operator

We assume that there exists a solution (σ,u) such that:

F (σ,u) = 0 and DF (σ,u) is an isomorphism on X×L4(Ω),

where
DF (σ,u) = Id + S(DG(σ,u)).

and

DG(σ,u)(τ,v) = θ × u+ ω × v ∀τ = (θ, q) ∈ X.
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The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 13/48



The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 13/48



The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

hK the diameter of the tetrahedron K,

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 13/48



The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

hK the diameter of the tetrahedron K,

he the diameter of the face e,

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 13/48



The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

hK the diameter of the tetrahedron K,

he the diameter of the face e,

Mh = {vh ∈ M;∀K ∈ Th, vh |K∈ P1(K)} ⊂ C0(Ω),
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The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

hK the diameter of the tetrahedron K,

he the diameter of the face e,

Mh = {vh ∈ M;∀K ∈ Th, vh |K∈ P1(K)} ⊂ C0(Ω),

Lh =
{
qh ∈ L2(Ω);∀K ∈ Th, qh |K∈ P0(K)

}
.
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The discrete Stokes operator

We define

(Th)h>0 regular family of triangulations of Ω

consisting of tetrahedrons,

Eh the set of internal faces,

hK the diameter of the tetrahedron K,

he the diameter of the face e,

Mh = {vh ∈ M;∀K ∈ Th, vh |K∈ P1(K)} ⊂ C0(Ω),

Lh =
{
qh ∈ L2(Ω);∀K ∈ Th, qh |K∈ P0(K)

}
.

Xh = Lh × Lh and Mh

are discrete subspaces of X and M .
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The discrete Stokes operator Sh

Sh : L
4

3 (Ω) → Xh × Mh

g 7→ (σh,uh)
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The discrete Stokes operator Sh

Sh : L
4

3 (Ω) → Xh × Mh

g 7→ (σh,uh)

(σh,uh) solution of :





Find (σh = (ωh, ph),uh) ∈ Xh × Mh such that

a(σh, τh) + βAh(σh, τh) + b(τh,uh) = 0 ∀τh = (θh, qh) ∈ Xh,

b(σh,vh) = −
∫
Ω g.vhdx ∀vh ∈ Mh,
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The discrete Stokes operator Sh

Sh : L
4

3 (Ω) → Xh × Mh

g 7→ (σh,uh)

(σh,uh) solution of :





Find (σh = (ωh, ph),uh) ∈ Xh × Mh such that

a(σh, τh) + βAh(σh, τh) + b(τh,uh) = 0 ∀τh = (θh, qh) ∈ Xh,

b(σh,vh) = −
∫
Ω g.vhdx ∀vh ∈ Mh,

where
Ah(σh, τh) =

∑

e∈Eh

he

∫

e
[ph][qh]ds +

∑

e⊂Γ2

he

∫

e
phqhdΓ,

β > 0 stabilization parameter,

[.] the jump across the edge e ∈ Eh.

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 14/48



The discrete Stokes operator

The inf-sup condition is satisfied.
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The discrete Stokes operator

The inf-sup condition is satisfied.

Coercivity: we add Ah to the bilinear form a(·, ·).
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The discrete Stokes operator

The inf-sup condition is satisfied.

Coercivity: we add Ah to the bilinear form a(·, ·).

a + βAh is uniformly continuous on Xh.
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The discrete Stokes operator

The inf-sup condition is satisfied.

Coercivity: we add Ah to the bilinear form a(·, ·).

a + βAh is uniformly continuous on Xh.

a + βAh is uniformly elliptic on Vh.
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The discrete Stokes operator

The inf-sup condition is satisfied.

Coercivity: we add Ah to the bilinear form a(·, ·).

a + βAh is uniformly continuous on Xh.

a + βAh is uniformly elliptic on Vh.

⇒Existence and uniqueness for discrete Stokes pb.
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The discrete Stokes operator

The operator Sh is linear, continuous and satisfies:

‖Sh(g)‖
X×L

4(Ω) ≤ c ‖g‖
L4/3(Ω)

with c independent of h and
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The discrete Stokes operator

The operator Sh is linear, continuous and satisfies:

‖Sh(g)‖
X×L

4(Ω) ≤ c ‖g‖
L4/3(Ω)

with c independent of h and

∀g ∈ L4/3(Ω), lim
h→0

‖(S − Sh)(g)‖
X×L

4(Ω) = 0.

Stabilized Finite Element Method for 3D Navier-Stokes Equations – p. 16/48



The discrete Stokes operator

The operator Sh is linear, continuous and satisfies:

‖Sh(g)‖
X×L

4(Ω) ≤ c ‖g‖
L4/3(Ω)

with c independent of h and

∀g ∈ L4/3(Ω), lim
h→0

‖(S − Sh)(g)‖
X×L

4(Ω) = 0.

Moreover, if g ∈ L2(Ω) and (σ,u) ∈ H1(Ω) × H2(Ω) :

‖(S − Sh)(g)‖
X×M

≤ ch ‖g‖
L2(Ω) .
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The discrete Stokes operator

Proof of the inf-sup condition: (usually difficult)
Since, for all τh = (θh, qh) ∈ Xh

b(τh,vh) = −(θh, curl vh) + (qh, div vh),

taking
τh = (−curlvh, divvh) ∈ Xh

we obtain

b(τh,vh) = ‖τh‖
2
X

= ‖curlvh‖
2
0,Ω + ‖divvh‖

2
0,Ω = |vh|

2
M

and sup
τh∈Xh

b(τh,vh)

‖τh‖X

=
b(τh,vh)

‖τh‖X

= ‖τh‖x = |vh|M.

Inf-Sup condition verified with constant γ = 1.
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The discrete Stokes operator

Proof of the Vh- coercivity (usually trivial) of ah:

ah = a + βAh.

Semi-norm on Xh associated to Ah: for all τh ∈ Xh,

|τh|h =
√

Ah(τh, τh) = (
∑

e∈Ch

he ‖[qh]‖2
0, e)

1

2

We have for all τh = (θh, qh) ∈ Vh:

ah(τh, τh) = ‖θh‖
2
0,Ω + β|τh|

2
h ≥ α‖τh‖

2
x

Proof of the Xh- continuity of ah: for all τh ∈ Xh,

|τh|h ≤ c ‖qh‖0,Ω .
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The discrete Navier-Stokes problem

The discrete Navier-Stokes formulation can be written:

Fh(σh,uh) = (0,0)

where Fh is defined by :

Fh : X × L4(Ω) → X × L4(Ω)

Fh(τ,v) = (τ,v) − Sh(f − G(τ,v)).
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The discrete Navier-Stokes problem

The discrete Navier-Stokes formulation can be written:

Fh(σh,uh) = (0,0)

where Fh is defined by :

Fh : X × L4(Ω) → X × L4(Ω)

Fh(τ,v) = (τ,v) − Sh(f − G(τ,v)).

The functional Fh is differentiable and:

DFh(σh,uh) = Id + Sh(DG(σh,uh)).

Main tool: variant of the implicit function theorem.
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The discrete Navier-Stokes problem

We show that: ∀(τ,v) ∈ Y = X × L4(Ω),

• ‖DFh(τ ,v) − DFh(τ,v)‖ ≤ c ‖(τ ,v) − (τ,v)‖
Y

.

• limh→0 ‖Fh(σ,u)‖
Y

= 0.

• ∃h0,∀h ≤ h0, DFh(σ,u) is an isomorphism and∥∥DFh(σ,u)−1
∥∥ ≤ 2

∥∥DF (σ,u)−1
∥∥ .
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The discrete Navier-Stokes problem

Then

Uniqueness for h < h0 in a neighborhood of (σ,u).
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The discrete Navier-Stokes problem

Then

Uniqueness for h < h0 in a neighborhood of (σ,u).

a priori estimates:

‖(σ,u) − (σh,uh)‖
Y

≤ c ‖Fh(σ,u)‖
Y

.
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The discrete Navier-Stokes problem

Then

Uniqueness for h < h0 in a neighborhood of (σ,u).

a priori estimates:

‖(σ,u) − (σh,uh)‖
Y

≤ c ‖Fh(σ,u)‖
Y

.

a posteriori estimates

‖(σ,u) − (σh,uh)‖
Y

≤ c ‖F (σh,uh)‖
Y

.
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A priori estimates

We get :

Unconditionally convergent method, since

Fh(σ,u) = (Sh − S)(f − ω × u).
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A priori estimates

We get :

Unconditionally convergent method, since

Fh(σ,u) = (Sh − S)(f − ω × u).

Optimal convergence rate O(h) if smooth solution
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A priori estimates

We get :

Unconditionally convergent method, since

Fh(σ,u) = (Sh − S)(f − ω × u).

Optimal convergence rate O(h) if smooth solution

Aubin-Nitsche argument ⇒ ‖u − uh‖L4(Ω) ≤ O(h5/4)

(respt. O(h3/2) in 2D)
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A posteriori estimators

Residuals on every element K of the triangulation:
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A posteriori estimators

Residuals on every element K of the triangulation:

η1 = ν(ωh − curluh), η2 = divuh , η3 = f − ωh × uh,
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A posteriori estimators

Residuals on every element K of the triangulation:

η1 = ν(ωh − curluh), η2 = divuh , η3 = f − ωh × uh,

η4 =





ν[ωh] if e ∈ Eh

νωh if e ∈ Γ3

0 if e ∈ Γ1 ∪ Γ2

, η5 =





[ph] if e ∈ Eh

ph if e ∈ Γ2

0 if e ∈ Γ1 ∪ Γ3

,
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A posteriori estimators

Residuals on every element K of the triangulation:

η1 = ν(ωh − curluh), η2 = divuh , η3 = f − ωh × uh,

η4 =





ν[ωh] if e ∈ Eh

νωh if e ∈ Γ3

0 if e ∈ Γ1 ∪ Γ2

, η5 =





[ph] if e ∈ Eh

ph if e ∈ Γ2

0 if e ∈ Γ1 ∪ Γ3

,

η2
K = ‖η1‖

2
0,K+‖η2‖

2
0,K+h2s

K ‖η3‖
2
0,K+h2s−1

e

∑

e∈∂K

(‖η4‖
2
0,e+‖η5‖

2
0,e)

where s ∈
]

3
4 , 1

]
is such that M ⊂ Hs(Ω). Then :
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A posteriori estimators

Residuals on every element K of the triangulation:

η1 = ν(ωh − curluh), η2 = divuh , η3 = f − ωh × uh,

η4 =





ν[ωh] if e ∈ Eh

νωh if e ∈ Γ3

0 if e ∈ Γ1 ∪ Γ2

, η5 =





[ph] if e ∈ Eh

ph if e ∈ Γ2

0 if e ∈ Γ1 ∪ Γ3

,

η2
K = ‖η1‖

2
0,K+‖η2‖

2
0,K+h2s

K ‖η3‖
2
0,K+h2s−1

e

∑

e∈∂K

(‖η4‖
2
0,e+‖η5‖

2
0,e)

where s ∈
]

3
4 , 1

]
is such that M ⊂ Hs(Ω). Then :

‖(σ,u) − (σh,uh)‖
Y

≤ c(
∑

K∈Th

η2
K)1/2.
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A posteriori estimators: A 2D example

Coarse grid Refined grid
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A posteriori estimators: A 2D example

Coarse grid Refined grid

Estimators on the different meshes
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A posteriori estimators

A tool to fix the parameter β

Example on the 2D step test
Values of η
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A posteriori estimators

A tool to fix the parameter β

Example on the 2D step test
Values of η for β = 0.03,
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A posteriori estimators

A tool to fix the parameter β

Example on the 2D step test
Values of η for β = 0.03, β = 0.5
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A posteriori estimators

A tool to fix the parameter β

Example on the 2D step test
Values of η for β = 0.03, β = 0.5 and β = 2
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Numerical results: Convergence Rate

Ω =] − 1, 1[3,

p = sin(πx)sin(πy)sin(πz), u1 = cos(πx)sin(πy)sin(πz),

u2 = sin(πx)cos(πy)sin(πz), u3 = −2sin(πx)sin(πy)cos(πz).
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Numerical results: Convergence Rate

Ω =] − 1, 1[3,

p = sin(πx)sin(πy)sin(πz), u1 = cos(πx)sin(πy)sin(πz),

u2 = sin(πx)cos(πy)sin(πz), u3 = −2sin(πx)sin(πy)cos(πz).

Slope :−1
3 and h ∼ N− 1

3 then errors ∼ O(h)
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Numerical results: The cavity tests (Re=100)

The cavity test on the unit cube

Mesh: 3232 elem., 838 nodes Streamlines
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Numerical results: The cavity tests (Re=100)

Vorticity lines Pressure isolines
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Numerical results: The cavity tests (Re=5000)

The cavity test on the domain ]0,1[×]0,1[×]0,2[

Mesh: 8619 elem., 1920 nodes Vorticity lines
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Numerical results: The cavity tests (Re=5000)

Velocity Streamlines
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Numerical results: The step test (Re=10)

Mesh :10794 elements, 2665 nodes

Pressure imposed on the inlet and outlet boundaries.
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Numerical results: The step test (Re=10)

Velocity
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Numerical results: The step test (Re=10)

Streamlines
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Numerical results: The step test (Re=10)

Pressure
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Numerical results: The step test (Re=1000)

Mesh :10794 elements, 2665 nodes

Pressure imposed on the inlet and outlet boundaries.
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Numerical results: The step test (Re=1000)

Streamlines closed to the step
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Numerical results: The step test (Re=1000)

View from the bottom Lateral view

Velocity near the step
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Numerical results: The step test (Re=1000)

Streamlines closed to the step
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Numerical results: The step test (Re=1000)

Streamlines closed to the step
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Numerical results: The step test (Re=1000)

Vorticity lines
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Numerical results: The step test (Re=1000)

Pressure
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Numerical results: T-shaped domain (Re=100)

Mesh: 10053 elem., 2469 nodes

Pressure (imposed on inlet and outlet)
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Numerical results: T-shaped domain (Re=100)

Streamlines

Velocity
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Numerical results: T-shaped domain (Re=100)

Vorticity lines
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Numerical results: T-shaped domain (Re=10e4)

Mesh: 21985 elem., 5024 nodes

Pressure imposed on the inlet and outlet boundaries.
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Numerical results: T-shaped domain (Re=10e4)

Streamlines and Velocity
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Numerical results: T-shaped domain (Re=10e4)

Vorticity lines and pressure
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Numerical results: T-shaped domain

Streamlines for Re=100 and Re=10000
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