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Space-Time Discontinuous Galerkin Finite Element Methods

Motivation of research:

• In many applications one encounters moving and deforming flow domains:

I Aerodynamics: helicopters, manoeuvering aircraft, wing control surfaces

I Fluid structure interaction

I Two-phase and chemically reacting flows with free surfaces

I Water waves, including wetting and drying of beaches and sand banks

• A key requirement for these applications is to obtain an accurate and conservative

discretization on moving and deforming meshes
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Motivation of Research

Other requirements

• Improved capturing of vortical structures and flow discontinuities, such as shocks

and interfaces, using hp-adaptation.

• Capability to deal with complex geometries.

• Excellent computational efficiency for unsteady flow simulations.

These requirements have been the main motivation to develop a space-time

discontinuous Galerkin method.
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Overview of Lecture

• Space-time discontinuous Galerkin finite element discretization for the compressible

Navier-Stokes equations

I main aspects of discretization

I efficient solution techniques

• Applications in aerodynamics

• Concluding remarks
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Space-Time Approach

Key feature of a space-time discretization

• A time-dependent problem is considered directly in four dimensional space, with

time as the fourth dimension
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Space-Time Domain
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Benefits of Space-Time Approach

A space-time discretization of time-dependent problems has as main benefits

• The problem is transformed into a steady state problem in space-time which makes

it easier to deal with time dependent boundaries. No extrapolation or interpolation

of (boundary) data

• A conservative numerical discretization is obtained on deforming and locally refined

meshes
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Compressible Navier-Stokes Equations

• Compressible Navier-Stokes equations in space-time domain E ⊂ R
4:

∂Ui

∂x0

+
∂F e

k(U)

∂xk
−
∂F v

k (U,∇U)

∂xk
= 0

• Conservative variables U ∈ R
5 and inviscid fluxes F e ∈ R

5×3

U =




ρ

ρuj
ρE



 , F e
k =




ρuk

ρujuk + pδjk
ρhuk







University of Twente - Chair Numerical Analysis and Computational Mechanics 8

Compressible Navier-Stokes Equations

• Viscous flux F v ∈ R
5×3

F
v
k =




0

τjk
τkjuj − qk





with the total stress tensor τ ∈ R
3×3 defined as:

τjk = λ
∂ui

∂xi
δjk + µ(

∂uj

∂xk
+
∂uk

∂xj
)

and the heat flux vector q ∈ R
3 given by:

qk = −κ
∂T

∂xk
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Compressible Navier-Stokes Equations

• The viscous flux F v is homogeneous with respect to the gradient of the

conservative variables ∇U :

F
v
ik(U,∇U) = Aikrs(U)

∂Ur

∂xs

with the homogeneity tensor A ∈ R
5×3×5×3 defined as:

Aikrs(U) :=
∂F v

ik(U,∇U)

∂(∇U)

• The system is closed using the equations of state for an ideal gas.
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Space-Time Discontinuous Galerkin Discretization

Main features of a space-time DG approximation

• Basis functions are discontinuous in space and time

• Weak coupling through numerical fluxes at element faces

• Discretization results in a coupled set of nonlinear equations for the DG expansion

coefficients
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Space-Time Slab

x

T

1x

K

K

n

n

n+1t

nt

I

j

n+1
j

E 

jK
n

QjQ
n

j
n

Ω(T)
0

Space-time slab with elements in a space-time domain.
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Benefits of Space-Time DG Discretization

Main benefits of a space-time DG approximation

• The space-time DG method results in a very local discretization, which is beneficial

for:

I hp-mesh adaptation

I parallel computing

• The space-time discretization is conservative on moving and deforming meshes and

also on locally adapted meshes
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Discontinuous Finite Element Approximation

Approximation spaces

• The finite element space associated with the tessellation Th is given by:

Wh :=
{
W ∈ (L2(Eh))

5 : W |K ◦GK ∈ (P k(K̂))5, ∀K ∈ Th
}

• We will also use the space:

Vh :=
{
V ∈ (L2(Eh))

5×3 : V |K ◦GK ∈ (P k(K̂))5×3, ∀K ∈ Th
}
.

• Note the fact that ∇hWh ⊂ Vh is essential for the discretization.
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First Order System

• Rewrite the compressible Navier-Stokes equations as a first-order system using the

auxiliary variable Θ:

∂Ui

∂x0

+
∂F e

ik(U)

∂xk
−
∂Θik(U)

∂xk
= 0,

Θik(U)−Aikrs(U)
∂Ur

∂xs
= 0.
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Weak Formulation

• Weak formulation for the compressible Navier-Stokes equations

Find a U ∈ Wh, Θ ∈ Vh, such that for all W ∈ Wh and V ∈ Vh, the following

holds:

−
∑

K∈Th

∫

K

(∂Wi

∂x0

Ui +
∂Wi

∂xk
(F e

ik −Θik)
)
dK

+
∑

K∈Th

∫

∂K

W
L
i (Ûi + F̂

e
ik − Θ̂ik)n

L
k d(∂K) = 0,

∑

K∈T n
h

∫

K

VikΘik dK =
∑

K∈T n
h

∫

K

VikAikrs

∂Ur

∂xs
dK

+
∑

K∈T n
h

∫

Q

V L
ikA

L
ikrs(Ûr − U

L
r )n̄Ls dQ
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Geometry of Space-Time Element
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Transformation to Arbitrary Lagrangian Eulerian form

• The space-time normal vector on a grid moving with velocity ~v is:

n =






(1, 0, 0, 0)T at K(t−n+1),

(−1, 0, 0, 0)T at K(t+n ),

(−vkn̄k, n̄)T at Qn.

• The boundary integral then transforms into:

∑

K∈Th

∫

∂K

W
L
i (Ûi + F̂

e
ik − Θ̂ik)n

L
k d(∂K)

=
∑

K∈Th

( ∫

K(t−n+1)

WL
i Ûi dK +

∫

K(t+n )

WL
i Ûi dK

)

+
∑

K∈Th

∫

Q

W
L
i (F̂

e
ik − Ûivk − Θ̂ik)n̄

L
k dQ
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Numerical Fluxes

• The numerical flux Û at K(t−n+1) and K(t+n ) is defined as an upwind flux to

ensure causality in time:

Û =

{
UL at K(t−n+1),

UR at K(t+n ),

• At the space-time faces Q we introduce the HLLC approximate Riemann solver as

numerical flux:

n̄k(F̂
e
ik − Ûivk)(U

L, UR) = HHLLC
i (UL, UR, v, n̄)
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ALE Weak Formulation

• The ALE flux formulation of the compressible Navier-Stokes equations transforms

now into:

Find a U ∈ Wh, such that for all W ∈ Wh, the following holds:

−
∑

K∈T n
h

∫

K

(∂Wi

∂x0

Ui +
∂Wi

∂xk
(F

e
ik − Θik)

)
dK

+
∑

K∈T n
h

( ∫

K(t−n+1)

W
L
i U

L
i dK −

∫

K(t+n )

W
L
i U

R
i dK

)

+
∑

K∈T n
h

∫

Q

WL
i (HHLLC

i (UL, UR, v, n̄)− Θ̂ikn̄
L
k ) dQ = 0.
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Ensuring Monotonicity of Second and Higher Order DG
Discretizations

• For flow discontinuities a stabilization operator is added to the weak formulation

Nn∑

j=1

∫

Kn
j

(∇ Wh)
T · D(Uh) : ∇Uh dK

The dyadic product is defined as A : B = AijBij for A,B ∈ Rn×m.

• Both the jumps at element faces and the element residual are used to define the

artificial viscosity (Jaffre, Johnson and Szepessy model).

• A stabilization operator results in a numerical scheme which can converge to

steady state. This is not possible with a slope limiter.
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Efficient Solution of Nonlinear Algebraic System

• The space-time DG discretization results in a large system of nonlinear algebraic

equations:

L(Ûn; Ûn−1) = 0

• This system is solved by marching to steady state using pseudo-time integration

and multigrid techniques:

∂Û

∂τ
= −

1

∆t
L(Û ; Û

n−1
)
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Benefits of Coupled Pseudo-Time and Multigrid Approach

• The locality of the DG discretization is preserved, which is beneficial for parallel

computing and hp-adaptation.

• In comparison with a Newton method the memory overhead is considerably smaller

• The algorithm has good stability and convergence properties and is not sensitive to

initial conditions
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EXI Runge-Kutta Scheme

• Explicit Runge-Kutta method for inviscid flow with Melson correction.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 5 compute V̂ s as:

(
I + αsλI

)
V̂
s
= V̂

0
+ αsλ

(
V̂
s−1
− L(V̂

s−1
; Û

n−1
)
)
.

3. Return Û = V̂ 5.

• Runge-Kutta coefficients: α1 = 0.0791451, α2 = 0.163551, α3 = 0.283663,

α4 = 0.5 and α5 = 1.0.

• The factor λ is the ratio between the pseudo- and physical-time step:

λ = ∆τ/∆t.
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EXV Runge-Kutta Scheme

• Explicit Runge-Kutta method for viscous flows.

1. Initialize V̂ 0 = Û .

2. For all stages s = 1 to 4 compute V̂ s as:

V̂
s
= V̂

0
− αsλL(V̂

s−1
; Û

n−1
).

3. Return Û = V̂ 4.

• Runge-Kutta coefficients: α1 = 0.0178571, α2 = 0.0568106, α3 = 0.174513

and α4 = 1.0.
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Combined EXI-EXV Runge-Kutta Scheme

• Time accuracy is not important in pseudo-time, we apply therefore local

pseudo-time stepping and deploy whichever scheme gives the mildest stability

constraint.

• The exi scheme has the mildest stability constraint for relatively high cell Reynolds

numbers and the exv scheme for relatively low cell Reynolds numbers.

• The pseudo-time Runge-Kutta schemes act as smoother in a multigrid algorithm.
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Stability Analysis

• Stability analysis is conducted for the linear advection-diffusion equation with

periodic boundary conditions

ut + aux = duxx, t ∈ (0, T ), x ∈ R,

with a > 0 and d > 0 constant.

• The domain is divided into uniform rectangular elements ∆t by ∆x.

• The discretization depends on the CFL number

CFL4t = a4t/4x

the diffusion number

β = d4t/(4x)
2

and the stabilization coefficient η.
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Stability Analysis for Steady State Inviscid Problems

−10 −8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Re(z)

Im
(z

)

0.2
0.4

0.6

0.
6

0.8

0.8
1

1

−30 −25 −20 −15 −10 −5 0

−10

−5

0

5

10

Re(z)

Im
(z

)

0.2 0.2

0.2
0.2

0.4 0.4 0.4

0.4

0.
6

0.6

0.6

0.
6

0.8

0.8
0.8

0.
8

1

1
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steady-state inviscid flow regime (λ = 1.8 · 10−2, CFL4t = 1.8).
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Stability Analysis for Steady State Viscous Problems
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Stability Analysis for Time-Dependent Inviscid Problems
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Stability Analysis for Time-Dependent Viscous Problems
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Performance of Pseudo-Time Integration Schemes
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Convergence to steady state for the GAMM A1 case (M∞ = 0.8, Re∞ = 73,
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Performance of Time Integration Schemes
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Two-Level h-Multigrid Algorithm

• At the core of any multigrid method is the two-level algorithm.

• Subscripts (·)h and (·)H denote a quantity (·) on the fine and coarse grid.

• Define:

I Û an approximation of the solution Ûn

I R the restriction operator for the solution

I R̄ the restriction operator for the residuals

I P the prolongation operator

• The h-multigrid algorithm is applied only in space, hence the time-step is equal on

both levels; but multi-time multi-space multigrid is also feasible.
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Two-level h-Multigrid Algorithm

Two-level algorithm.

1. Take one pseudo-time step on the fine grid with the combined exi and exv

methods, this gives the approximation Ûh.

2. Restrict this approximation to the coarse grid: ÛH = R(Ûh).

3. Compute the forcing:

FH ≡ L(ÛH; Û
n−1
H )− R̄

(
L(Ûh; Û

n−1
h )

)
.

4. Solve the coarse grid problem for the unknown Û∗H :

L(Û∗H; Ûn−1
H )− FH = 0,

5. Compute the coarse grid error EH = Û∗H − ÛH and correct the fine grid

approximation: Ûh ← Ûh + P (EH).
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Two-level h-Multigrid Algorithm

• Solving the coarse grid problem at stage four of the multigrid algorithm can again

be done with the two-level algorithm.

• This recursively defines the V-cycle multi-level algorithm in terms of the two-level

algorithm.

• It is common practice to take ν1 pseudo-time pre-relaxation steps at stage one and

another ν2 post-relaxation pseudo-time steps after stage five.

• The exact solution of the problem on the coarsest grid is not always feasible;

instead one simply takes ν1 + ν2 relaxation steps.
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Inter-Grid Transfer Operators

• The inter-grid transfer operators stem from the L2-projection of the coarse grid

solution UH in an element KH on the corresponding set of fine elements {Kh}.

• The solution Uh in element Kh can be found by solving:

∫

Kh

WiU
h
i dK =

∫

Kh

WiU
H
i dK, ∀W ∈ Wh.

• This relation supposes the embedding of spaces, i.e. WH ⊂Wh, to ensure that

UH is defined on Kh.
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Prolongation Algorithm

• Introducing the polynomial expansions of the test and trial functions, we obtain the

prolongation operator P : UH → Uh:

Ûh
im = (M−1

h )ml
( ∫

Kh

ψhl ψ
H
n dK

)
ÛH
in.

with the mass matrix Mh of element Kh

• The restriction operator for the residuals is defined as the transpose of the

prolongation operator: R̄ = P T .

• The restriction operator R for the solution is defined as R = P−1, such that the

property UH = R(P (UH)) holds, meaning that the inter-grid transfer does not

modify the solution.
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Error Amplification Operator

• The error amplification operator of the two-level algorithm MTLA
h , is given by:

MTLA
h = MCGC

h MREL
h ,

with MREL
h the error amplification operator associated with either the exi or exv

scheme.

• The coarse grid correction (CGC) of the multigrid algorithm is given by:

MCGC = I − PL−1
H R̄Lh.

• The convergence behaviour of the two-level algorithm for the space-time dg

discretization is given by the spectral radius of the error amplification

operatorρ(MTLA
h ).
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Stability Parameters

• The space-time DG discretization is implicit in time and unconditionally stable.

• The Runge-Kutta methods are explicit in pseudo time and their stability depends

on the ratio λ between the pseudo time step and the physical time step

λ = ∆τ/∆t.

• The stability condition is expressed in terms of the pseudo-time cfl number σ∆τ

and the pseudo-time diffusive Von Neumann condition δ∆τ :

∆τ ≤ ∆τ
a
≡
σ∆τh

a
and ∆τ ≤ ∆τ

d
≡
δ∆τh

2

d
.

The pseudo-time cfl number is given by σ∆τ = λσ and the pseudo-time diffusive

Von Neumann number by δ∆τ = λσ/Reh
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Eigenvalue Spectra Two-Level Algorithm with EXI Smoother
(Steady Case)
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Eigenvalue spectra of the exi smoother and two-level algorithm in the steady

advection dominated case (σ = 100 and Reh = 100).



University of Twente - Chair Numerical Analysis and Computational Mechanics 41

Eigenvalue Spectra Two-Level Algorithm with EXV Smoother
(Steady Case)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

low
high

(c) exi

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(d) tla with exi

Eigenvalue spectra of the exv smoother and two-level algorithm in the steady

diffusion dominated case (σ = 100 and Reh = 0.01).
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Eigenvalue Spectra Two-Level Algorithm with EXI Smoother
(unsteady case)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

low
high

(e) exi

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(f) tla with exi

Eigenvalue spectra of the exi smoother and two-level algorithm in the unsteady

advection dominated case (σ = 1 and Reh = 100).
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Eigenvalue Spectra Two-Level Algorithm with EXV Smoother
(unsteady case)
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Eigenvalue spectra of the exv smoother and two-level algorithm in the unsteady

diffusion dominated case (σ = 1 and Reh = 0.01).
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Spectral Radii of Two-Level Algorithm for Steady Problems
(σ = 100)

EXI smoother

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 1.8e-02 0.991 0.622

10 8.0e-03 0.996 0.716

1 1.4e-03 0.999 0.906

EXV smoother

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 2.0e-03 0.999 0.914

10 3.0e-03 0.998 0.871

1 7.0e-03 0.996 0.697
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Spectral Radii of Two-Level Algorithm for Unsteady Problems
(σ = 1)

EXI smoother

Reh ∆τ/∆t ρ
(
MEXI

h

)
ρ

(
MTLA

h

)

100 1.6e-00 0.796 0.479

10 8.0e-01 0.918 0.599

1 1.4e-01 0.904 0.837

EXV smoother

Reh ∆τ/∆t ρ
(
MEXV

h

)
ρ

(
MTLA

h

)

100 1.0e-00 0.924 0.660

10 7.0e-01 0.812 0.704

1 7.0e-01 0.805 0.719
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Numerical Simulations

• Definition of work units:

I One work unit corresponds to one Runge-Kutta step on the fine grid.

I The work on a one times coarsened mesh is 1
8 of the work on the fine grid

(1
4 in 2D).



University of Twente - Chair Numerical Analysis and Computational Mechanics 47

Convergence Rate for Flow about a Circular Cylinder
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Steady-state (L) and time-accurate (R)

M∞ = 0.3, Re∞ = 40, 64× 64 mesh (L) and 80× 84 mesh (R)
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Convergence Rate for Unsteady Flow about Circular Cylinder

iterations
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M∞ = 0.3, Re∞ = 1000 on a 128× 128 mesh

Multigrid: 3 level V-cycle, 4 relaxation steps on each level.
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Flow about ONERA M6 Wing

• Steady laminar flow about the ONERA M6 wing at M∞ = 0.4, Re∞ = 104 and

angle of attack α = 1◦.

• Fine grid consists of 125 000 hexahedral elements.

• Multigrid iteration consisting of 3 level V- or W-cycles.

• The V-cycle has a total of 4 relaxations on each grid level, while the W-cycle has 4

relaxations on the fine grid and 8 on the medium and coarse grid.
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Grid and Flow about ONERA M6 Wing

X

Y

Z

MACH
0.45
0.405
0.36
0.315
0.27
0.225
0.18
0.135
0.09
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0
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0.4
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0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6

Mach number isolines and the pressure coefficient Cp on the ONERA M6 wing

M∞ = 0.4, Re∞ = 104 and α = 1◦.



University of Twente - Chair Numerical Analysis and Computational Mechanics 51

Convergence Rate for ONERA M6 Wing
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Convergence in pseudo-time for the ONERA M6 wing

M∞ = 0.4, Re∞ = 104, α = 1◦.
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Summary of Computational Effort for Different Cases

Case
Single-grid Multigrid Cost

performance performance reduction

cylinder (steady)
2 orders 3 orders

9.4
in 12 500 WU in 2000 WU

cylinder (unsteady)
3 orders 3 orders

5.0
in 150 WU in 30 WU

ONERA M6
2 orders 3 orders

3.7
in 5000 WU in 2000 WU

Summary of computational effort for cylinder and ONERA M6 wing.
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Delta Wing Simulations

• Simulations of viscous flow about a delta wing with 85◦ sweep angle.

• Conditions

I Angle of attack α = 12.5◦.

I Mach number M = 0.3

I Reynolds numbers Re = 40.000 and Re = 100.000 (LES)

I Unadapted fine grid mesh 1.600.000 elements, 40.000.000 degrees of

freedom

I Adapted mesh for LES with 1.919.489 elements, 47.987.225 degrees of freedom
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Delta Wing Simulations

Streaklines and vorticity contours in various cross-sections
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Delta Wing Simulations

Impression of the vorticity based mesh adaptation
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Delta Wing Simulations

Adapted mesh and vorticity field in primary vortex and cross-sections of a delta wing

(Rec = 100.000, Ma = 0.3, α = 12.5 degrees).
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Delta Wing Simulations

Vorticity field near leading edge of delta wing at x = 0.9c

(Rec = 100.000, Ma = 0.3, α = 12.5 degrees)
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NACA0012 Airfoil in Laminar Dynamic Stall

Conditions:

• Free stream Mach number M∞ = 0.2

• Reynolds number 10000

• Pitch axis is situated at 25% from the leading edge

• Angle of attack α evolves as:

α(t) = a+ bt− a exp(−ct),

with coefficients a = −1.2455604, b = 2.2918312, c = 1.84 and time

t ∈ [0, 25].

• Time step ∆t = 0.005

• C-type mesh with 112× 38 elements with 14 elements in the boundary layer
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NACA0012 Airfoil in Laminar Dynamic Stall

Streamlines around NACA 0012 airfoil in dynamic stall at α = 30◦.
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NACA0012 Airfoil in Laminar Dynamic Stall

Streamlines around NACA 0012 airfoil in dynamic stall at α = 40◦.
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NACA0012 Airfoil in Laminar Dynamic Stall

Streamlines around NACA 0012 airfoil in dynamic stall at α = 50◦.
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NACA0012 Airfoil in Laminar Dynamic Stall

50.7o

Adapted mesh around NACA 0012 airfoil in dynamic stall at α = 50.7◦.
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Conclusions

The space-time discontinuous Galerkin method has the following interesting properties:

• Accurate, unconditionally stable scheme for the compressible Navier-Stokes

equations.

• Conservative discretization on moving and deforming meshes which satisfies the

geometric conservation law.

• Local, element based discretization suitable for h-(p) mesh adaptation.

• Optimal accuracy proven for advection-diffusion equation.
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Conclusions

• Runge-Kutta pseudo-time integration methods in combination with multigrid are

an efficient technique to solve the nonlinear algebraic equations originating from

the space-time DG method.

• Two-level Fourier analysis of the space-time dg discretization for the scalar

advection-diffusion equation shows good convergence factors.

• The construction of intergrid transfer operators is based on the L2 projection of

the coarse grid solution on the fine grid and assumes embedding of spaces.

More information on: wwwhome.math.utwente.nl/~vegtjjw/


