
IMEX Linear Multistep Methods for Stiff

Hyperbolic Relaxation Systems

Willem Hundsdorfer, CWI, Amsterdam

(Talk based on joint work with Steve Ruuth, SFU)

Contents:

• Implicit-explicit (IMEX) linear multistep methods

• Why IMEX ?

– Why not fully explicit ?

– Why not fully implicit ?

• Design of IMEX linear multistep methods

• IMEX Runge-Kutta methods

• Comparisons:

– Stability: advection with reaction/diffusion

– Local discretization errors

– Numerical examples



IMEX multistep methods

Applications :

ut + ∇ · f(u) = 1
ǫ
g(u) . . . conservation laws with stiff relaxation,

ut + ∇ · f(u) = ∇ · (K(u)∇u) . . . convection-diffusion.

PDE and spatial discretization ; system of ODEs

u′(t) = F (u(t)) + G(u(t))

with F non-stiff or mildly stiff, and G a stiff term.

IMEX linear multistep methods: un ≈ u(tn), tn = n∆t,

un =
k∑

j=1

ajun−j +
k∑

j=1

b̂j∆tF (un−j) +
k∑

j=0

bj∆tG(un−j) ,

with starting values: u0, u1, . . . , uk−1.
Direct combination of explicit and implicit methods without splitting errors.



Why IMEX ?

• Why not only EX ? (fully explicit)
Stability will require very small stepsizes for stiff sources, relaxation or
diffusion terms.

• Why not only IM ? (fully implicit)
For problems with shocks or steep gradients, implicit methods are not much
better than explicit ones. For advection discretizations with limiting or
WENO in space, the implicit relations are hard (expensive) to solve.

Example: Implicit and extrapolated BDF2 for convection problem.
Buckley-Leverett equation:

ut + f(u)x = 0 , f(u) =
u2

u2 + 1
3(1 − u)2

,

with u(0, t) = 1
2 and initial block-function (zero on (0, 1

2], one on (1
2, 1]).

Flux-limited spatial discretization (van Leer); fixed grid with ∆x = 5 · 10−3.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1 t = 0

t = 1/4

• Implicit BDF2 scheme :

un = 4
3un−1 −

1
3un−2 + 2

3∆tF (un) .

Order 2; unconditionally stable.

• Extrapolated BDF2 scheme :

un = 4
3un−1 −

1
3un−2 + 4

3∆tF (un−1) −
2
3∆tF (un−2) .

Order 2; stable for Courant numbers . 1
2.



Plots of numerical solutions at time t = 1
4 with

∆t/∆x = 1/8 .
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Plots of numerical solutions at time t = 1
4 with

∆t/∆x = 1/8 , ∆t/∆x = 1/4 .
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Plots of numerical solutions at time t = 1
4 with

∆t/∆x = 1/8 , ∆t/∆x = 1/4 , ∆t/∆x = 1/2 .
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Requirements on IMEX LM

• Accuracy : order p = k, moderate error constants

• Implicit method : stable for stiff systems, and good damping properties

• Explicit method : non-oscillatory/monotone. Theory: under assumption
‖v + τ0F (v)‖TV ≤ ‖v‖TV with total variation semi-norm,

– TVD methods (Shu) :

‖un‖TV ≤ max0≤j≤k−1 ‖uj‖TV for 0 < ∆t ≤ Cτ0,

with constant C determined by the method (not the problem).
Having C > 0 leads to p < k.

– TVB methods (H. & Ruuth) :

‖un‖TV ≤ M · ‖u0‖TV for 0 < ∆t ≤ Cτ0,

with M ≥ 1 determined by the starting procedure.
∗ This allows much larger class of interesting methods, p = k

(e.g. Adams and BDF type).

∗ Example: for impl. BDF2 : C = 1
2 ; for extrap. BDF2 : C = 5

8 .
∗ In practice, M ≈ 1 + ǫ for any ”decent” starting procedure.



Design of IMEX LM : possibility I

Start with an implicit method (BDF) and combine this with a corresponding
kth order expl. method.

Examples based on implicit BDF [Crouzeix, Varah, 1980]:

• IMEX BDF2

un = 4
3un−1 −

1
3un−2 + 4

3∆t Fn−1 −
2
3∆t Fn−2 + 2

3∆tGn

Most popular IMEX method of order two.

• IMEX BDF3

un = 18
11un−1 −

9
11un−2 + 2

11un−3

+ 18
11∆t Fn−1 −

18
11∆t Fn−2 + 6

11∆t Fn−3 + 6
11∆tGn



Design of IMEX LM : possibility II

Start with an explicit method (Adams or optimal TVB) and find correspondig
kth order impl. method with good stability/damping properties (for example,
A(α)-stability and optimal damping at ∞).

Examples:

• IMEX Adams2

un = un−1+ 3
2∆t Fn−1−

1
2∆t Fn−2+ 9

16∆t Gn+ 3
8∆t Gn−1+ 1

16∆t Gn−2

• IMEX TVB3

un = 3909
2048un−1 −

1367
1024un−2 + 873

2048un−3

+ 18463
12288∆t Fn−1 −

1271
768 ∆t Fn−2 + 8233

12288∆t Fn−3

+ 1089
2048∆tGn − 1139

12288∆t Gn−1 −
367
6144∆tGn−2 + 1699

12288∆tGn−3



IMEX Runge-Kutta methods

un,i = un−1 +

i−1∑

j=1

âij∆t F (un,j) +

i∑

j=1

aij∆t G(un,j) , i = 1, . . . , s ,

un = un−1 +

s∑

j=1

b̂j∆t F (un,j) +

s∑

j=1

bj∆tG(un,j) .

Examples:
• PR2 [Pareschi & Russo, 2005] : p = 2, s = 2,
• PR3 [Pareschi & Russo, 2005] : p = 3, s = 4,
• ARS3 [Ascher, Ruuth, Spiteri, 1995] : p = 3, s = 4,
• KC4 [Kennedy & Carpenter, 2003] : p = 4, s = 6,
• KC5 [Kennedy & Carpenter, 2003] : p = 5, s = 8.

The PR2, PR3 schemes are based on expl. TVD methods; the others are not.

Let ĉi =
∑

j âij, ci =
∑

j aij. For most methods ĉi = ci, i = 1, . . . , s.

Exception: Pareschi-Russo methods; first stage backward Euler for G only,
to make the method ”asymptotic preserving”.



Stability

Stabiltity analysis is quite complicated, even for scalar test equation

u′(t) = λ u(t) + µ u(t) , λ, µ ∈ C .

Also relevant for systems u′(t) = Au(t) + Bu(t) with normal, commuting
matrices A,B (e.g. von Neumann analysis). In general:

stability expl. method for ∆tλ
stability impl. method for ∆tµ

}
=⇒× stabilty of the IMEX scheme

Some sufficient conditions for stability of the IMEX scheme:

• Linear equations: [Ascher et. al (1995, 1997), Frank et. al (1997)
Pareschi & Russo (2000), ... ].

• Nonlinear equations: [Akrivis, Crouzeix, et. al (1998, 1999, 2003)].

Not much literature, and from these results it is not really possible to
determine whether one scheme is better than another.



Stability for linear test equations (advection explicit)

(1) Advection diffusion . . . ut + aux = duxx with d ≥ 0.

(2) Advection reaction . . . ut + aux = −cu with c ≥ 0.

Below: Examples for (2) with 2nd-order central spatial discretization;
boundaries of stability regions DAR are plotted with

– on horizontal axis the ‘growth factor’ −c∆t ,
– on vertical axis the Courant number ν = |a|∆t/∆x .
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Fig: Boundaries of DAR for third-order methods BDF3 and TVB3
and Adams3 (stable below boundary, unstable above boundary).
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Fig: Boundaries of DAR for fourth-order methods BDF4, TVB4
and Adams4.
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Fig: Boundaries of DAR for fifth-order methods BDF5, TVB5.
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Fig: Boundaries of DAR for the IMEX Runge-Kutta methods
ARS3, PR3, KC4 and KC5.

Compared with these Runge-Kutta methods, the regions of stability are
slightly better for the IMEX LM methods BDFk and in particular for TVBk.
• Also with 1st-order and 3rd-order upwind advection.
• Same for advection-diffusion test equation.



Temporal discretization errors

• LM : if the explicit method and the implicit method are of order p, then

– the IMEX scheme is of order p
– the local errors are independent of the stiffness

• RK : for the IMEX scheme to have order p for non-stiff problems, we
need order p for the explicit and the implicit method, together with
compatibility conditions. Moreover

– for stiff problems there can be order reduction with the RK methods:

∗ if all ĉi = ci, then order of accuracy may reduce to 2;

∗ if ĉi 6= ci for some i, then the order may reduce to 1,
and this can happen already for stationary problems.

Such order reduction of RK schemes is due to the fact that in general
(∆tA)ju(m)(t) 6= O(∆tj) if A is a discretized differential operator (with
negative powers of ∆x), no matter how smooth the solution.



Numerical example: order reduction

Linear advection-reaction problem (advection explicit)

ut + ux = −k1u + k2v ,

vt = k1u − k2v + 1 .

for 0 < x < 1, 0 < t < 1, with k1 = 106, k2 = 2 106. Init.& bd. values:

u(x, 0) = 1 + x , v(x, 0) =
k1
k2

u(x, 0) + 1
k2

, u(0, t) = 1 .

This gives simple stationary solution. Results not good for the PR schemes.

∆t 1.00 · 10−2 5.00 · 10−3 2.50 · 10−3 1.25 · 10−3

PR2 2.36 · 10−3 1.18 · 10−3 5.89 · 10−4 2.93 · 10−4

PR3 9.47 · 10−4 4.74 · 10−4 2.37 · 10−4 1.18 · 10−4

BDF2 1.74 · 10−11 9.40 · 10−12 1.49 · 10−11 1.35 · 10−11

Table: L1-errors versus step size for fixed spatial grid ∆x = 1/100.



Numerical example: accuracy test

Simplified adsorption-desorption problem with a dissolved concentration u
and adsorbed concentration v,

ut + aux = κ(v − φ(u)) ,

vt = −κ(v − φ(u)) ,

for 0 < x < 1 and 0 < t ≤ 5
4, with φ(u) = k1u/(1 + k2u). Parameters

κ = 106, k1 = 50, k2 = 100. Initial values u = v = 0, boundary values

{
u(0, t) = 1 − cos2(6πt) if a > 0 ,

u(1, t) = 0 if a < 0 .

Velocity given as

a = −3
π

arctan(100(t − 1)) ≈

{
1.5 for t < 1 (adsorption phase) ,

−1.5 for t > 1 (desorption phase) .



accuracy test (cont.)
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Fig: Dissolved concentration u and total concentration u + v for the
adsorption-desorption problem at times t = 1, 5

4.

We consider IMEX schemes with advection explicit.

Spatial discretization by WENO5 scheme, mesh width ∆x = 1/800.



accuracy test (cont.)

Results for IMEX schemes of order 4 and 5:
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Fig: Temporal L1-errors vs. scaled step sizes ∈ (4 · 10−5, 6 · 10−4).
Left: fourth-order IMEX methods BDF4, TVB4, Adams4 and KC4.
Right: fifth-order IMEX methods BDF5, TVB5 and KC5.

Spatial error ≈ 1.2 · 10−3.



Numerical example: positivity preservation

Biological population density model

ut = d uxx + rb(x) ǫ u
ǫ+u

− rd u + f(t, x) ,

for t > 0, x ∈ (0, 1) with spatial periodicity and u(x, 0) = 0. Implicit
diffusion, standard 2nd order discr., ∆x = 1/100. Parameters rd = 1,
ǫ = 0.005,

rb(x) =

{
1 if x ∈ [0, 1/2],

100 otherwise.

The forcing term gives an impuls (random ∈ [0.8, 1.2]) at t = 0. Examples
of steady state profiles :
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For this model the maximal time step has been determined such that the
numerical solution remains non-negative.

IMEX meth. d = 0 d = 0.01 d = 0.04

Adams2 0.447 0.445 0.478

BDF2 0.628 0.636 0.686

Adams3 0.161 0.152 0.163

BDF3 0.391 0.390 0.414

TVB3 0.540 0.541 0.575

Adams4 0 0 0

BDF4 0.221 0.214 0.226

TVB4 0.461 0.460 0.487

BDF5 0.088 0.074 0.082

TVB5 0.379 0.376 0.397

PR2 1.004 0.745 0.745

PR3 1.004 0.498 0.572

For the other IMEX RK schemes (ARS, KC) the maximal step size was 0.

The results for d = 0 agree closely with general theory. For the IMEX LM
schemes results remain the same (approx.) for d > 0.



Conclusions

• IMEX LM methods have some advantages over IMEX RK methods:

– (slightly) better stability, much better monotonicity properties,
– better accuracy behaviour for stiff problems.

Of course, the IMEX RK methods are self-starting.

• IMEX Adams methods not sufficiently stable/monotone for k ≥ 4.

• Good results for the IMEX BDF and IMEX TVB schemes.

– the TVB class is more stable/monotone,
– the BDF class somewhat more accurate.

Paper: www.cwi.nl/~willem → recent articles / reports


