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Méthodes numériques pour les fluides
Paris, December 20 2006

D. A. Di Pietro – dipietro@cermics.enpc.fr ENPC/CERMICS

Discontinuous Galerkin Methods for Anisotropic and Semi-Definite Diffusion with Advection

mailto:dipietro@cermics.enpc.fr


The Continuous Problem DG Approximation Numerical Results Conclusion

Introduction

◮ We consider advection-diffusion-reaction problems with
◮ discontinuous
◮ anisotropic
◮ semi-definite diffusivity

◮ The mathematical nature of the problem may not be uniform over
the domain

◮ Indeed, because of anisotropy, the problem may be hyperbolic in one
direction and elliptic in another

◮ The solution may be discontinuous across elliptic-hyperbolic
interfaces
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Model Problem

◮ Ω ⊂ R
d bounded, open and connected Lipschitz domain

◮ PΩ
def
= {Ωi}N

i=1 partition of Ω into Lipschitz connected subdomains

◮ Consider the following problem:

∇·(−ν∇u + βu) + µu = f

◮ ν ∈ [L∞(Ω)]d,d symmetric piecewise constant on PΩ is s.t. ν ≥ 0
◮ β ∈ [C1(Ω)]d

◮ µ ∈ L∞(Ω) is s.t. µ + 1
2
∇·β ≥ µ0 with µ0 > 0
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A One-Dimensional Example






(−νu′
ǫ + uǫ)
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uǫ(0) = 1,

uǫ(1) = 0. 10 1/3 2/3

β = 1

ν = 1ν = 1

ν = ǫ

Ω1 Ω2 Ω3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1e+0
1e-1
1e-2
1e-3

limǫ→0 uǫ = IΩ1∪Ω2(x) + 3(x − 1) IΩ3(x), discontinuous at x = 2/3
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Goals

◮ At the continuous level, design suitable interface and BC’s to define
a well-posed problem

◮ At the discrete level, design a DG method that
◮ does not require the a priori knowledge of the elliptic-hyperbolic

interface
◮ yields optimal error estimates in mesh-size that are robust w.r.t.

anisotropy and semi-definiteness of diffusivity
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Outline

The Continuous Problem
Weak Formulation
Well-Posedness Analysis

DG Approximation
Design of the DG Method
Error Analysis
Other Amenities

Numerical Results

Conclusion
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Weak Formulation

Interface Conditions I

◮ Let

Γ
def
= {x ∈ Ω; ∃Ωi1 , Ωi2 ∈ PΩ, x ∈ ∂Ωi1 ∩ ∂Ωi2},

where i1 and i2 are s.t. (ntνn)|Ωi1
≥ (ntνn)|Ωi2

◮ We define the elliptic-hyperbolic interface as

I
def
= {x ∈ Γ; (ntνn)(x)|Ωi1

> 0, (ntνn)(x)|Ωi2
= 0 }

◮ Set, moreover,

I+ def
= {x ∈ I ; β·n1 > 0}, I−

def
= {x ∈ I ; β·n1 < 0}
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Weak Formulation

Interface Conditions II

◮ For all scalar ϕ with a (possibly two-valued) trace on Γ, define

{ϕ} def
= 1

2 (ϕ|Ωi1
+ ϕ|Ωi2

), [[ϕ]]
def
= ϕ|Ωi1

− ϕ|Ωi2

◮ We require that

[[u]] = 0, on I+ (E → H)

◮ Observe that continuity is not enforced on I−

◮ When ν is isotropic the above conditions coincide with those derived
in [Gastaldi and Quarteroni, 1989] in the one-dimensional case
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Weak Formulation

A Two-Dimensional Exact Solution I

ν1 = π2

ν2 = 0

x

y

θ
I+ I−

β = eθ

r
β = eθ

r

n1n1

For a suitable rhs,

u =

{

(θ − π)2, if 0 ≤ θ ≤ π,

3π(θ − π), if π < θ < 2π.
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Weak Formulation

A Two-Dimensional Exact Solution II
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Weak Formulation

An Example with Strongly Anisotropic Diffusivity

ν1 =

[
1 0
0 0.25

]

ν2 =

[
0 0
0 1

]

I−

I+

β = (−5, 0)

n1n1
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Weak Formulation

Friedrichs-Like Mixed Formulation I

◮ We want to reformulate the problem so as to recover the symmetry
and dissipativity (L-coercivity) properties of Friedrichs systems
[Friedrichs, 1958]

◮ The problem in symmetric mixed formulation reads

{

σ + κ∇u = 0, in Ω \ I ,

∇·(κσ + βu) + µu = 0, in Ω,
(mixed)

where κ
def
= ν1/2

◮ For y = (yσ , yu), the advective-diffusive flux is defined as

Φ(y)
def
= κyσ + βyu
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Weak Formulation

Friedrichs-Like Mixed Formulation II

◮ The graph space is

W
def
= {y ∈ L; κ∇yu ∈ Lσ and ∇·Φ(y) ∈ Lu }

with

Lσ
def
= [L2(Ω \ I )]d Lu

def
= L2(Ω) L

def
= Lσ × Lu

◮ The space choice together with condition (E → H) yields

{Φ(z)·n} = 0, on Γ,

[[zu]] = 0, on Γ \ I−.
(cond. Γ)
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Weak Formulation

Friedrichs-Like Mixed Formulation III

◮ Define the zero- and first-order operators

L(L; L) ∋ K : z 7→ (zσ, µzu)

L(W ; L) ∋ A : z 7→ (κ∇zu ,∇·Φ(z))

◮ The bilinear form

a0(z, y)
def
= ((K + A)z, y)L +

∫

I+

(β·n1)[[z
u]][[yu]]

is L-coercive whenever z and y are compactly supported

◮ a0 will serve as a base for the construction of a weak problem with
boundary and interface conditions weakly enforced
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Weak Formulation

Boundary Conditions Weakly Enforced I

◮ Define the operators M and D s.t., for all z, y ∈ W × W

〈Dz, y〉W ′ ,W =

∫

∂Ω

y tDz, 〈Mz, y〉W ′,W =

∫

∂Ω

y tMz,

where, for α ∈ {−1, +1},

D =

[

0 κn

(κn)t β·n

]

, M =

[

0 −ακn

α(κn)t |β·n|

]

◮ Observe that M ≥ 0
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Weak Formulation

Boundary Conditions Weakly Enforced II

a(z, y)
def
= ((K + A)z, y)L +

∫

I+

(β·n1)[[z
u]][[yu]]

︸ ︷︷ ︸

a0(z, y)

+ 1
2 〈(M − D)(z), y〉W ′ ,W

◮ a is L-coercive on W

◮ Let

∂ΩE
def
= {x ∈ ∂Ω; (ntνn)(x) > 0}, ∂ΩH

def
= ∂Ω \ ∂ΩE .

Then
◮ α = +1 Dirichlet on ∂ΩE/inflow on ∂ΩH in Ker(M − D)

◮ α = −1 Neumann-Robin on ∂ΩE/inflow on ∂ΩH in Ker(M − D)
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Well-Posedness Analysis

Main Result

Theorem
Let f ∈ Lu. Consider the problem

{

Find z ∈ W such that, for all y ∈ W ,

a(z, y) = (f , yu)Lu

(weak)

Then, (weak) is well-posed and its solution

◮ solves (mixed) with BC’s (M − D)(z)|∂Ω = 0;

◮ satisfies interface conditions (cond. Γ)
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Design of the DG Method

DG approximation I

◮ Discontinuous Galerkin methods rely on a piecewise fully
discontinuous approximation

◮ To some extent, they can be seen as an extension of FV methods

◮ Their analysis can be performed exploiting many classical results
valid for continuous Galerkin FE approximations
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Design of the DG Method

DG approximation II

◮ Pros
◮ Discontinuous solutions are naturally handled so long as the

discontinuities are aligned with the mesh
◮ Convergence estimates only depend on local Sobolev regularity inside

each element (high-order convergence even for poorly regular
solutions)

◮ There is great freedom in the choice of bases and of element shapes
◮ hp-adaptivity can be easily implemented
◮ Non-matching grids allowed

◮ Cons
◮ High(er) computational cost
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Design of the DG Method

The discrete setting I

◮ Let {Th}h>0 be a family of affine meshes of Ω compatible with PΩ

◮ F i
h will denote the set of interfaces, F∂

h the set of boundary faces

and Fh
def
= F i

h ∪ F∂
h

◮ The discontinuous finite element space on Th is defined as follows:

Ph,p
def
= {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pp(T )}

◮ We assume that mesh regularity and usual inverse and trace
inequalities hold
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Design of the DG Method

The discrete setting II

T1
T2

F

◮ For all F i
h ∋ F = ∂T1 ∩ ∂T2 we define

λi
def
=
√

ntνn|Ti
i ∈ {1, 2},

and, without loss of generality, we assume that λ1 ≥ λ2

◮ Similarly, for F ∈ F∂
h

λ
def
=

√
ntνn

◮ Observe that the discrete counterpart of I± do not need to be
identified
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Design of the DG Method

Weighted Trace Operators

◮ For all F ∈ F i
h, let ω be a weight function s.t.

[L2(F )]2 ∋ ω = (ω1, ω2) ω1 + ω2 = 1 for a.e. x ∈ F

◮ For all F i
h ∋ F = ∂T1 ∩ ∂T2, for a.e. x ∈ F , set

{ϕ}ω
def
= ω1ϕ|T1 + ω2ϕ|T2 [[ϕ]]ω

def
= 2 (ω2ϕ|T1 − ω1ϕ|T2)

◮ When ω = ( 1
2 , 1

2 ), the usual average and jump operators are
recovered and subscripts are omitted
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Design of the DG Method

Generalities

The bilinear form ah associated to a DG method for a linear PDE
problem can be written as

ah(u, v) = aV
h (u, v) + ai

h(u, v) + a∂
h (u, v)

where

◮ aV
h corresponds to the standard Galerkin terms

◮ ai
h contains interface terms intended

◮ to penalize the non-conforming discrete components
◮ to ensure the consistency of the method

◮ a∂
h collects boundary terms used to weakly enforce boundary

conditions
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Design of the DG Method

Design Constraints

(C1) The bilinear form ah is L-coercive and strongly consistent
(C2) The elliptic-hyperbolic interfaces are not identified a priori, but an
automatic detection mechanism is devised instead
(C3) Suitable stabilizing terms are incorporated to control the fluxes
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Design of the DG Method

Design of the DG Bilinear Form I
Let SF and MF be two operators s.t.

∀F ∈ F i
h, SF ≥ 0,

∀F ∈ F∂
h , MF =

[
0 −ακnF

α(κnF )t Muu
F

]

and Muu
F ≥ 0,

with associated seminorms | · |M and | · |J and consider

ah(z, y)
def
=
∑

T∈Th

[(Kz, y)L,T + (Az, y)L,T ]

− 2
∑

F∈F i
h

({Φ(z)·n}, {yu}ω)Lu ,F + ([[zu]], 1
4 [[Φ(y)·n]]ω − β·n1

2 {yu})Lu,F

+
∑

F∈F i
h

(SF ([[zu]]), [[yu]])L,F + 1
2

∑

F∈F∂
h

((MF −D)z, y)L,F
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Design of the DG Method

Design of the DG Bilinear Form II
◮ We propose the following choices

∀F ∈ F i
h, ω =

{

( λ1

λ1+λ2
, λ2

λ1+λ2
), if λ1 > 0,

( 1
2 , 1

2 ), otherwise

Muu
F

def
=

|β·n|
2

+
α + 1

2

λ2

hF

, SF
def
=

|β·n|
2

+
λ2

2

hF

where by definition, λ2 = min(λ1, λ2)

◮ Then,
(i) ah is L-coercive, i.e., for all y in W (h), uniformly in h and κ,

ah(y , y) & ‖y‖2
L + |yu|2J + |yu |2M

(ii) ah is strongly consistent

∀yh ∈ Wh, ah(z, yh) = (f , yu
h )Lu
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Error Analysis

Basic Error Estimates

◮ The discrete problem is

{

Seek zh ∈ Wh such that

ah(zh, yh) = (f , yu
h )Lu

∀yh ∈ Wh

with Wh = [Ph,pσ
]d × Ph,pu

and pu − 1 ≤ pσ

◮ Define the natural energy norm

‖y‖2
h,κ

def
= ‖y‖2

L + |yu|2J + |yu |2M +
∑

T∈Th

‖κ∇yu‖2
Lσ,T

◮ The main result, holding uniformly in κ, reads

‖z − zh‖h,κ . hpu‖z‖[Hpσ+1(Th)]d×Hpu+1(Th)
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Error Analysis

Improved Convergence Estimates

◮ If the problem is uniformly elliptic,

‖zu − zu
h ‖Lu

. hpu+1‖z‖[Hpσ+1(Th)]d×Hpu+1(Th)

◮ If κ is isotropic,

‖zu − zu
h ‖h,β

def
=

(
∑

T∈Th

hT‖β·∇(zu − zu
h )‖2

Lu,T

) 1
2

. hpu (h
1
2 + ‖ν‖[L∞(Ω)]d,d )‖z‖[Hpσ+1(Th)]d×Hpu+1(Th)
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Other Amenities

Flux Formulation I

◮ Following engineering practice, the discrete problem can be
equivalently formulated in terms of local problems

◮ For all T ∈ Th, for all qσ ∈ [Ppσ
(T )]d ,

(zσ
h , qσ)Lσ,T − (zu

h ,∇·(κqσ))Lu ,T + (φσ(zu
h ), qσ)Lσ,∂T = 0

◮ For all T ∈ Th, for all qu ∈ Ppu
(T ),

(µzu
h , qu)Lu ,T − (zu

h , β·∇qu)Lu ,T − (zσ
h , κ∇qu))Lσ,T

+ (φu(zσ
h , zu

h ), qu)Lσ,∂T = (f , qu)Lu ,T
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Other Amenities

Flux Formulation II

◮ For all F i
h ∋ F ⊂ ∂T ,

φu(zσ
h , zu

h ) = nt
T{κzσ

h }ω + (β·nT ){zu
h } + (nT ·nF )SF ([[zu

h ]])

φσ(zu
h ) = (κ|TnT ){zu

h }ω

with ω
def
= (1, 1) − ω

◮ Similar expressions are obtained at boundary faces

◮ Note that φσ only depends on zu
h , which allows the local elimination

of zσ
h
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Other Amenities

Increasing Computational Efficiency

◮ The σ-component of the unknown can be eliminated by solving
reduced-size local problems.

◮ As a consequence, we end up with a discrete primal problem where
the sole u-component of the unknown appears.

◮ The stencil of the local problems can be further reduced by devising
variants of the method that take inspiration from
[Baker, 1977, Arnold, 1982] and [Bassi et al., 1997].

◮ The primal formulation of the DG method was used in all the
numerical test cases discussed below.

◮ Further details can be found in [Di Pietro et al., 2006].
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Convergence Results (Two-Dimensional Exact Solution)

h
Ph,1 Ph,2 Ph,3 Ph,4

err ord err ord err ord err ord

‖u − uh‖h,κ

1/2 3.15e+0 7.27e−1 1.74e−1 3.99e−2
1/4 1.63e+0 0.95 2.05e−1 1.83 2.69e−2 2.70 3.51e−3 3.51
1/8 8.19e−1 0.99 5.32e−2 1.94 3.59e−3 2.91 2.51e−4 3.81
1/16 4.08e−1 1.00 1.34e−2 1.99 4.54e−4 2.98 1.63e−5 3.95
1/32 2.04e−1 1.00 3.36e−3 2.00

‖u − uh‖Lu

1/2 2.92e−1 3.30e−2 5.79e−3 1.17e−3
1/4 7.49e−2 1.96 4.75e−3 2.80 4.62e−4 3.65 5.50e−5 4.41
1/8 1.91e−2 1.97 6.09e−4 2.96 3.26e−5 3.83 2.01e−6 4.77
1/16 4.86e−3 1.97 7.76e−5 2.97 2.10e−6 3.96 6.32e−8 4.99
1/32 1.23e−3 1.98 9.82e−6 2.98
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Example with Anisotropic Diffusivity I
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(a) Uh = Ph,1
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(b) Uh = Ph,2
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Example with Anisotropic Diffusivity II

x

y
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1

(c) Uh = Ph,3
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Conclusions

◮ A new DG method was designed, leading to optimal error estimates
w.r.t. mesh-size

◮ The method is robust w.r.t. anisotropic and semi-definite diffusivity

◮ A key ingredient appears to be the use of diffusivity-dependent
weighted averages
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