Properties of Multipoint Flux Approximations

Ivar Aavatsmark

Centre for Integrated Petroleum Research
University of Bergen

Méthodes Numériques pour les Fluides GDR MoMas, 2006

Outline

Motivation

Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Outline

Motivation
Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Reservoir flow equations

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.
- The simulations are performed on nonorthogonal rough grids.

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.
- The simulations are performed on nonorthogonal rough grids.
- The medium is strongly heterogeneous.

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.
- The simulations are performed on nonorthogonal rough grids.
- The medium is strongly heterogeneous.
- The permeability is often anisotropic.

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.
- The simulations are performed on nonorthogonal rough grids.
- The medium is strongly heterogeneous.
- The permeability is often anisotropic.
- Here, we study control volume formulations for an elliptic model equation on quadrilateral grids.

Reservoir flow equations

- The equations of reservoir simulation contain variables which have elliptic and hyperbolic character.
- The simulations are performed on nonorthogonal rough grids.
- The medium is strongly heterogeneous.
- The permeability is often anisotropic.
- Here, we study control volume formulations for an elliptic model equation on quadrilateral grids.
- This guarantees local conservation, important for the hyperbolic part.

Outline

Motivation

Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Model equation

Model equation

$$
\begin{aligned}
\operatorname{div} \boldsymbol{q} & =Q & & \text { in } \Omega \\
\boldsymbol{q} & =-\boldsymbol{K} \operatorname{grad} u & & \text { in } \Omega
\end{aligned}
$$

Model equation

$$
\begin{aligned}
\operatorname{div} \boldsymbol{q} & =Q & & \text { in } \Omega \\
\boldsymbol{q} & =-\boldsymbol{K} \operatorname{grad} u & & \text { in } \Omega
\end{aligned}
$$

Model equation

$$
\begin{aligned}
\operatorname{div} \boldsymbol{q} & =Q & & \text { in } \Omega \\
\boldsymbol{q} & =-\boldsymbol{K} \operatorname{grad} u & & \text { in } \Omega \\
u & =u_{D} & & \text { on } \Gamma_{D}
\end{aligned}
$$

Model equation

$$
\begin{aligned}
\operatorname{div} \boldsymbol{q} & =Q & & \text { in } \Omega \\
\boldsymbol{q} & =-\boldsymbol{K} \operatorname{grad} u & & \text { in } \Omega \\
u & =u_{D} & & \text { on } \Gamma_{D} \\
\boldsymbol{q} \cdot \boldsymbol{n} & =q_{N} & & \text { on } \Gamma_{N}
\end{aligned}
$$

Maximum principle

Maximum principle

Suppose
$-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad$ in D.

Maximum principle

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D (E. Hopf, 1927).

Maximum principle (Hopf's first lemma)

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D (E. Hopf, 1927).

Maximum principle (Hopf's first lemma)

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D (E. Hopf, 1927).
Green's function for homogeneous Dirichlet boundary conditions on $\Omega \subset D: G(\boldsymbol{\xi}, \boldsymbol{x})$

Maximum principle (Hopf's first lemma)

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D (E. Hopf, 1927).
Green's function for homogeneous Dirichlet boundary conditions on $\Omega \subset D: G(\boldsymbol{\xi}, \boldsymbol{x})$

$$
u(\boldsymbol{x})=\int_{\Omega} G(\boldsymbol{\xi}, \boldsymbol{x}) q(\boldsymbol{\xi}) d \tau_{\boldsymbol{\xi}}
$$

Maximum principle (Hopf's first lemma)

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D (E. Hopf, 1927).
Green's function for homogeneous Dirichlet boundary conditions on $\Omega \subset D: G(\boldsymbol{\xi}, \boldsymbol{x})$

$$
\begin{gathered}
u(\boldsymbol{x})=\int_{\Omega} G(\boldsymbol{\xi}, \boldsymbol{x}) q(\xi) d \tau_{\boldsymbol{\xi}} \\
G(\boldsymbol{\xi}, \boldsymbol{x}) \geq 0 \quad \boldsymbol{\xi}, \boldsymbol{x} \in \Omega
\end{gathered}
$$

Equivalent maximum principle

Suppose
$-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad$ in D.

Equivalent maximum principle

Suppose

$$
-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad \text { in } D
$$

Then u has no local minima in D if and only if $G(\boldsymbol{x}, \boldsymbol{\xi}) \geq 0$ in Ω for all $\Omega \subset D$ with homogeneous Dirichlet boundary conditions on $\partial \Omega$.

Equivalent maximum principle

Suppose
$-\operatorname{div}(K \operatorname{grad} u)=q \geq 0 \quad$ in D.
Then u has no local minima in D if and only if $G(\boldsymbol{x}, \boldsymbol{\xi}) \geq 0$ in Ω for all $\Omega \subset D$ with homogeneous Dirichlet boundary conditions on $\partial \Omega$.

Monotonicity

Monotonicity

$G(\boldsymbol{x}, \boldsymbol{\xi}) \geq 0$ implies that the operator \mathcal{T}, defined by

$$
\mathcal{T} q=\int_{\Omega} G(\boldsymbol{\xi}, \boldsymbol{x}) q d \tau_{\boldsymbol{\xi}}
$$

is monotone in the sense that

$$
q \geq 0 \Rightarrow \mathcal{T} q \geq 0
$$

Monotonicity

$G(\boldsymbol{x}, \boldsymbol{\xi}) \geq 0$ implies that the operator \mathcal{T}, defined by

$$
\mathcal{T} q=\int_{\Omega} G(\boldsymbol{\xi}, \boldsymbol{x}) q d \tau_{\boldsymbol{\xi}}
$$

is monotone in the sense that

$$
q \geq 0 \Rightarrow \mathcal{T} q \geq 0
$$

We must show that \mathcal{T} is monotone for all Ω with homogeneous Dirichlet boundary conditions on $\partial \Omega$.

Champagne effect

Champagne effect

Champagne effect

Champagne effect

Champagne effect

Champagne effect

Champagne effect

Hopf's second lemma

Hopf's second lemma

- $\operatorname{div} \boldsymbol{q}=0$, where $\boldsymbol{q}=-\boldsymbol{K} \operatorname{grad} u$ in Ω.

Hopf's second lemma

- $\operatorname{div} \boldsymbol{q}=0$, where $\boldsymbol{q}=-\boldsymbol{K} \operatorname{grad} u$ in Ω.
- Maximum principle \Rightarrow Extrema lie on the boundary.

Hopf's second lemma

- $\operatorname{div} \boldsymbol{q}=0$, where $\boldsymbol{q}=-\boldsymbol{K} \operatorname{grad} u$ in Ω.
- Maximum principle \Rightarrow Extrema lie on the boundary.
- E. Hopf (1952): If there is an extremum on the boundary, then $\boldsymbol{q} \cdot \boldsymbol{n} \neq 0$.

Hopf's second lemma

- $\operatorname{div} \boldsymbol{q}=0$, where $\boldsymbol{q}=-\boldsymbol{K} \operatorname{grad} u$ in Ω.
- Maximum principle \Rightarrow Extrema lie on the boundary.
- E. Hopf (1952): If there is an extremum on the boundary, then $\boldsymbol{q} \cdot \boldsymbol{n} \neq 0$.
- Hence, extrema cannot occur on no-flow boundaries.

Outline

Motivation

Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Regularity of the solution

Regularity of the solution

$$
\begin{aligned}
& u \in H^{1}(\Omega) \\
& \boldsymbol{q} \in H(\operatorname{div}, \Omega)
\end{aligned}
$$

Regularity of the solution

$$
\begin{aligned}
& u \in H^{1}(\Omega) \\
& \boldsymbol{q} \in H(\operatorname{div}, \Omega)
\end{aligned}
$$

- Therefore, u and $\boldsymbol{q} \cdot \boldsymbol{n}$ should have the same trace from both sides of an interface.

Regularity of the solution

$$
\begin{aligned}
& u \in H^{1}(\Omega) \\
& \boldsymbol{q} \in H(\operatorname{div}, \Omega)
\end{aligned}
$$

- Therefore, u and $\boldsymbol{q} \cdot \boldsymbol{n}$ should have the same trace from both sides of an interface.
- In 1D, continuity of potential and flux yields a harmonic averaging of the permeability \boldsymbol{K}.

Regularity of the solution

$$
\begin{aligned}
& u \in H^{1}(\Omega) \\
& \boldsymbol{q} \in H(\operatorname{div}, \Omega)
\end{aligned}
$$

- Therefore, u and $\boldsymbol{q} \cdot \boldsymbol{n}$ should have the same trace from both sides of an interface.
- In 1D, continuity of potential and flux yields a harmonic averaging of the permeability K.
- Tikhonov and Samarskij (1962) showed that harmonic averaging is crucial for maintaining the order of convergence for piecewise continuous K.

Regularity of the solution

$$
\begin{aligned}
& u \in H^{1}(\Omega) \\
& \boldsymbol{q} \in H(\operatorname{div}, \Omega)
\end{aligned}
$$

- Therefore, u and $\boldsymbol{q} \cdot \boldsymbol{n}$ should have the same trace from both sides of an interface.
- In 1D, continuity of potential and flux yields a harmonic averaging of the permeability \boldsymbol{K}.
- Tikhonov and Samarskij (1962) showed that harmonic averaging is crucial for maintaining the order of convergence for piecewise continuous K.
- Method: Generalize harmonic averaging to 2D and 3D by requiring continuity in flux and (weak) continuity in potential.

Control-volume formulation

Control-volume formulation

$$
\int_{\partial \Omega_{i}} \boldsymbol{q} \cdot \boldsymbol{n} d \sigma=\int_{\Omega_{i}} Q d \tau
$$

Control-volume formulation

$$
\int_{\partial \Omega_{i}} \boldsymbol{q} \cdot \boldsymbol{n} d \sigma=\int_{\Omega_{i}} Q d \tau
$$

$$
f=\int_{S} \boldsymbol{q} \cdot \boldsymbol{n} d \sigma
$$

O-method

O-method

Cells with common corner

O-method

Cells with common corner

O-method

Cells with common corner

Interaction volume

O-method

Cells with common corner

Interaction volume

O-method

Cells with common corner

Interaction volume

- Determine the flux through the half edges from the interaction of linear potentials in the four cells.

O-method

Cells with common corner

Interaction volume

- Determine the flux through the half edges from the interaction of linear potentials in the four cells.
- Require continuous potential at $\overline{\boldsymbol{x}}_{i}$ and continuous flux through the half edges.

Flux equations in an interaction region

Flux equations in an interaction region

Cells with common corner

Flux equations in an interaction region

Cells with common corner

Flux equations in an interaction region

$$
\begin{aligned}
& f_{1}=f_{1}^{(1)}=f_{1}^{(2)} \\
& f_{2}=f_{2}^{(4)}=f_{2}^{(3)} \\
& f_{3}=f_{3}^{(3)}=f_{3}^{(1)} \\
& f_{4}=f_{4}^{(2)}=f_{4}^{(4)}
\end{aligned}
$$

Flux equations in an interaction region

Cells with common corner

$$
\begin{aligned}
& f_{1}=f_{1}^{(1)}=f_{1}^{(2)} \\
& f_{2}=f_{2}^{(4)}=f_{2}^{(3)} \\
& f_{3}=f_{3}^{(3)}=f_{3}^{(1)} \\
& f_{4}=f_{4}^{(2)}=f_{4}^{(4)}
\end{aligned}
$$

\Rightarrow Local explicit expression for the half-edge fluxes

Flux expression

Flux expression

Cells with common

$$
f_{i}=\sum_{j=1}^{4} t_{i, j} u_{j} \quad \text { where } \quad \sum_{j=1}^{4} t_{i, j}=0
$$ corner

Flux expression

Cells with common corner

Flux stencil
$f_{i}=\sum_{j=1}^{4} t_{i, j} u_{j} \quad$ where $\quad \sum_{j=1}^{4} t_{i, j}=0$
$f_{i}=\sum_{j=1}^{6} t_{i, j} u_{j} \quad$ where $\quad \sum_{j=1}^{6} t_{i, j}=0$

Flux expression

Cells with common corner

Flux stencil

$$
f_{i}=\sum_{j=1}^{4} t_{i, j} u_{j} \quad \text { where } \quad \sum_{j=1}^{4} t_{i, j}=0
$$

Stencils

Stencils

Stencils

Cell stencil

3D stencil

$$
4 \square>4 \text { 岛 } \downarrow \text { 引 }
$$

3D stencil

In 3 dimensions, the interaction volume contains 8 cells. The flux stencil has 18 cells, and the cell stencil has 27 cells.

3D stencil

In 3 dimensions, the interaction volume contains 8 cells. The flux stencil has 18 cells, and the cell stencil has 27 cells.

Interaction volume

3D stencil

In 3 dimensions, the interaction volume contains 8 cells. The flux stencil has 18 cells, and the cell stencil has 27 cells.

Interaction volume

Cell stencil

Polygonal and triangular grids

Polygonal and triangular grids

Cell stencil in polygonal grid

Polygonal and triangular grids

Cell stencil in polygonal grid

Flux stencil in triangular grid

MPFA O-method

MPFA O-method

- For non-parallelogram quadrilaterals with strong irregularity, convergence may be lost.

MPFA O-method

- For non-parallelogram quadrilaterals with strong irregularity, convergence may be lost.
- For high skewness combined with strong aspect or anisotropy ratio, oscillating solutions may occur.

Anisotropy ratio 1:1000
$\theta=30^{\circ}$
Square grid

Challenges

Challenges

- Are there MPFA-methods with a larger domain of validity for convergence and monotonicity?

Challenges

- Are there MPFA-methods with a larger domain of validity for convergence and monotonicity?
- Are there methods which behave less oscillatory when monotonicity cannot be assured?

Challenges

- Are there MPFA-methods with a larger domain of validity for convergence and monotonicity?
- Are there methods which behave less oscillatory when monotonicity cannot be assured?
- Does such a new method have disadvantages?

Outline

Motivation
Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

L-method

L-method

L-shaped coupling

L-method

> Inside the "triangle":

L-shaped coupling

L-method

Inside the "triangle":

- Linear potential in each cell

L-shaped coupling

L-method

Inside the "triangle":

- Linear potential in each cell
- Full potential continuity

L-shaped coupling

L-method

Inside the "triangle":

- Linear potential in each cell
- Full potential continuity
- Flux continuity

L-shaped coupling

L-method

Inside the "triangle":

- Linear potential in each cell
- Full potential continuity
- Flux continuity
- $3 \cdot 2=6$ deg. of freedom

L-shaped coupling

L-method

L-shaped coupling

Inside the "triangle":

- Linear potential in each cell
- Full potential continuity
- Flux continuity
- $3 \cdot 2=6$ deg. of freedom
- $2 \cdot 3=6$ conditions

Interaction region

Interaction region

Interaction region

Short diagonal

Long diagonal

7-point cell stencil

7-point cell stencil

Cell stencil

7-point cell stencil

Permeability ellipse

$$
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{K}^{-1} \boldsymbol{x}=1
$$

7-point cell stencil

Permeability ellipse $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{K}^{-1} \boldsymbol{x}=1$

Cell stencil

General case

General case

Triangle 1
Transmissibilities: t_{j}^{1}

Triangle 2
Transmissibilities: t_{j}^{2}

General case

Triangle 1
Transmissibilities: t_{j}^{1}

Triangle 2
Transmissibilities: t_{j}^{2}

If $\left|t_{1}^{1}\right|<\left|t_{2}^{2}\right|$, triangle 1 is chosen, else triangle 2 is chosen.

Top edge

Top edge
相

Top edge

- For moderate skewness, the choice will be between these cases, and it is natural to choose the case to the left.

Top edge

- For moderate skewness, the choice will be between these cases, and it is natural to choose the case to the left.
- For homogeneous medium and uniform grid, the criterion always chooses the "natural" seven-point stencil.

Top edge

- For moderate skewness, the choice will be between these cases, and it is natural to choose the case to the left.
- For homogeneous medium and uniform grid, the criterion always chooses the "natural" seven-point stencil.

Top edge

- For moderate skewness, the choice will be between these cases, and it is natural to choose the case to the left.
- For homogeneous medium and uniform grid, the criterion always chooses the "natural" seven-point stencil.

3D L-stencils

3D L-stencils

In 3 dimensions there are 4 L-stencils with 4 cells.

3D L-stencils

In 3 dimensions there are 4 L-stencils with 4 cells.

3D flux stencils

3D flux stencils

In 3 dimensions the flux stencil contains 6 till 10 cells, and the cell stencil has 13 till 19 cells.

3D flux stencils

In 3 dimensions the flux stencil contains 6 till 10 cells, and the cell stencil has 13 till 19 cells.

i direction

j direction

k direction

Outline

Motivation
Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Test grids

Test grids

Test cases, streamlines

Smooth solution:

Nonsmooth solutions:

$$
u \in H^{2.29}
$$

$u \in H^{1.79}$

$$
u \in H^{1.24}
$$

Comparisons

Comparisons

Compare convergence behavior of $\mathrm{L}-, \mathrm{O}(0)$ - and O(0.5)-method.

Comparisons

Compare convergence behavior of L -, $\mathrm{O}(0)$ - and O(0.5)-method.

$\mathrm{O}(\eta)$-method

Comparisons

Compare convergence behavior of L -, $\mathrm{O}(0)$ - and O(0.5)-method.

$\mathrm{O}(\eta)$-method

Parallelogram grid, aspect ratio 1 , angle 30°

Parallelogram grid, aspect ratio 0.01, angle 30°

Pressure

Normal flow density

Perturbed parallelogram grid, aspect ratio 0.1, angle 30°

Perturbed parallelogram grid, aspect ratio 0.01, angle 30°

Normal flow density

Flow around a corner, $u \in H^{1.79}$

Convergence tests

Convergence tests

Tested L^{2} and L^{∞} convergence for

- solutions $u \in H^{1+\alpha}, \alpha>0$,

Convergence tests

Tested L^{2} and L^{∞} convergence for

- solutions $u \in H^{1+\alpha}, \alpha>0$,
- smooth and rough grids,

Convergence tests

Tested L^{2} and L^{∞} convergence for

- solutions $u \in H^{1+\alpha}, \alpha>0$,
- smooth and rough grids,
- grid aspect ratios between 10^{-2} and 10^{2},

Convergence

Convergence

On rough quadrilateral grids, the simulation tests indicate that if $u \in H^{1+\alpha}, \alpha>0$, then

$$
\begin{aligned}
\left\|u_{h}-u\right\|_{L^{2}} & \sim h^{\min \{2,2 \alpha\}} \\
\left\|u_{h}-u\right\|_{L^{\infty}} & \sim h^{\min \{2, \alpha\}} \\
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{2}} & \sim h^{\min \{1, \alpha\}}
\end{aligned}
$$

Convergence

On rough quadrilateral grids, the simulation tests indicate that if $u \in H^{1+\alpha}, \alpha>0$, then

$$
\begin{aligned}
\left\|u_{h}-u\right\|_{L^{2}} & \sim h^{\min \{2,2 \alpha\}} \\
\left\|u_{h}-u\right\|_{L^{\infty}} & \sim h^{\min \{2, \alpha\}} \\
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{2}} & \sim h^{\min \{1, \alpha\}}
\end{aligned}
$$

On smooth quadrilateral grids, stronger flow density bounds apply:

$$
\begin{aligned}
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{2}} & \sim h^{\min \{2, \alpha\}} \\
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{\infty}} & \sim h^{\min \{2, \alpha-1\}}
\end{aligned}
$$

Convergence

On rough quadrilateral grids, the simulation tests indicate that if $u \in H^{1+\alpha}, \alpha>0$, then

$$
\begin{aligned}
\left\|u_{h}-u\right\|_{L^{2}} & \sim h^{\min \{2,2 \alpha\}} \\
\left\|u_{h}-u\right\|_{L^{\infty}} & \sim h^{\min \{2, \alpha\}} \\
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{2}} & \sim h^{\min \{1, \alpha\}}
\end{aligned}
$$

On smooth quadrilateral grids, stronger flow density bounds apply:

$$
\begin{aligned}
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{2}} & \sim h^{\min \{2, \alpha\}} \\
\left\|\left(\boldsymbol{q}_{h}-\boldsymbol{q}\right) \cdot \boldsymbol{n}\right\|_{L^{\infty}} & \sim h^{\min \{2, \alpha-1\}}
\end{aligned}
$$

These rates apply to "moderate" aspect ratios.

Outline

MotivationProperties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

[^0]
Discrete monotonicity

Discrete monotonicity

Solution of differential equation with homogeneous Dirichlet boundary conditions

$$
u=\mathcal{T} q
$$

where the operator \mathcal{T} is a monotone operator.

Discrete monotonicity

Solution of differential equation with homogeneous Dirichlet boundary conditions

$$
u=\mathcal{T} q
$$

where the operator \mathcal{T} is a monotone operator. Associated discrete system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{q}
$$

Discrete monotonicity

Solution of differential equation with homogeneous Dirichlet boundary conditions

$$
u=\mathcal{T} q
$$

where the operator \mathcal{T} is a monotone operator. Associated discrete system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{q}
$$

The matrix \boldsymbol{A}^{-1} is monotone if

$$
\boldsymbol{A}^{-1} \geq \mathbf{O}
$$

Discrete monotonicity

Solution of differential equation with homogeneous Dirichlet boundary conditions

$$
u=\mathcal{T} q
$$

where the operator \mathcal{T} is a monotone operator.
Associated discrete system

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{q}
$$

The matrix \boldsymbol{A}^{-1} is monotone if

$$
\boldsymbol{A}^{-1} \geq 0
$$

Then

$$
\boldsymbol{q} \geq \mathbf{0} \quad \Rightarrow \quad \boldsymbol{u} \geq \mathbf{0}
$$

Discrete maximum principle

Discrete maximum principle

Natural discrete analogue of the maximum principle:

$$
\boldsymbol{A}^{-1} \geq 0
$$

for all subgrids with homogeneous Dirichlet boundary conditions.

Discrete maximum principle

Natural discrete analogue of the maximum principle:

$$
\boldsymbol{A}^{-1} \geq \mathbf{0}
$$

for all subgrids with homogeneous Dirichlet boundary conditions.
The associated scheme is then called monotone.

Discrete maximum principle

Natural discrete analogue of the maximum principle:

$$
\boldsymbol{A}^{-1} \geq 0
$$

for all subgrids with homogeneous Dirichlet boundary conditions.
The associated scheme is then called monotone.

Discrete maximum principle

Natural discrete analogue of the maximum principle:

$$
\boldsymbol{A}^{-1} \geq \mathbf{0}
$$

for all subgrids with homogeneous Dirichlet boundary conditions.
The associated scheme is then called monotone.

$$
\boldsymbol{A}^{-1} \geq \mathbf{O}
$$

Nonmonotone examples

Nonmonotone examples

Anisotropy ratio 1:1000
$\theta=\pi / 6$
$\eta=0$
$\boldsymbol{A}^{-1} \nsupseteq 0$

Nonmonotone examples

Anisotropy ratio 1:1000

$$
\begin{gathered}
\theta=\pi / 6 \\
\eta=0 \\
\boldsymbol{A}^{-1} \nsupseteq \mathbf{O}
\end{gathered}
$$

Anisotropy ratio 1:10000
$\theta=0$
$\eta=0.5$
$\boldsymbol{A}^{-1} \nsupseteq \mathbf{O}$

Outline

Motivation
Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity

Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Monotone matrices

4ロ〉4司〉

Monotone matrices

Conditions for $\boldsymbol{A}^{-1} \geq \boldsymbol{O}$

Monotone matrices

Conditions for $\boldsymbol{A}^{-1} \geq \mathbf{O}$

- For which matrices \boldsymbol{A} does this hold?

Monotone matrices

Conditions for $\boldsymbol{A}^{-1} \geq \mathbf{O}$

- For which matrices \boldsymbol{A} does this hold?
- For which stencils does this hold?

Monotone matrices

Conditions for $\boldsymbol{A}^{-1} \geq \mathbf{O}$

- For which matrices \boldsymbol{A} does this hold?
- For which stencils does this hold?

$$
-\int_{\Omega_{i, j}} \operatorname{div}(\boldsymbol{K} \operatorname{grad} u) d \tau \approx \sum_{k=1}^{9} m_{k}^{i, j} u_{k}
$$

Monotone matrices

Conditions for $\boldsymbol{A}^{-1} \geq \mathbf{O}$

- For which matrices \boldsymbol{A} does this hold?
- For which stencils does this hold?

$$
-\int_{\Omega_{i, j}} \operatorname{div}(\boldsymbol{K} \operatorname{grad} u) d \tau \approx \sum_{k=1}^{9} m_{k}^{i, j} u_{k}
$$

Splittings

Splittings

- The matrix \boldsymbol{A} is splitted into two matrices $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.

Splittings

- The matrix \boldsymbol{A} is splitted into two matrices $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If

$$
\begin{aligned}
\boldsymbol{B}^{-1} & \geq \boldsymbol{O} \\
\boldsymbol{B}^{-1} \boldsymbol{C} & \geq \boldsymbol{O}
\end{aligned}
$$

then the splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$ is weakly regular.

Splittings

- The matrix \boldsymbol{A} is splitted into two matrices $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If

$$
\begin{aligned}
\boldsymbol{B}^{-1} & \geq \boldsymbol{O} \\
\boldsymbol{B}^{-1} \boldsymbol{C} & \geq \boldsymbol{O}
\end{aligned}
$$

then the splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$ is weakly regular. It follows:

$$
\boldsymbol{A}^{-1} \geq \boldsymbol{O} \quad \Leftrightarrow \quad \rho\left(\boldsymbol{B}^{-1} \boldsymbol{C}\right)<1
$$

Splittings

Splittings

- Suppose \boldsymbol{A} has a weakly regular splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.

Splittings

- Suppose \boldsymbol{A} has a weakly regular splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If
$\boldsymbol{A} \boldsymbol{e} \geq \mathbf{0}$,
$\boldsymbol{B}^{-1} \boldsymbol{C}$ irreducible,
then $\rho\left(\boldsymbol{B}^{-1} \boldsymbol{C}\right)<1$.

Splittings

- Suppose \boldsymbol{A} has a weakly regular splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{e} \geq \mathbf{0}, \\
\boldsymbol{B}^{-1} \boldsymbol{C} \text { irreducible },
\end{gathered}
$$

then $\rho\left(\boldsymbol{B}^{-1} \boldsymbol{C}\right)<1$.

- Generalization of M-matrix theory.

Splittings

Splittings

- Splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.

Splittings

- Splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If

$$
\begin{aligned}
& \boldsymbol{e}^{\mathrm{T}} \boldsymbol{A} \geq \boldsymbol{0}^{\mathrm{T}}, \\
& \boldsymbol{B}^{-1} \geq \boldsymbol{O}, \\
& \boldsymbol{C} \boldsymbol{B}^{-1} \geq \boldsymbol{O}, \\
& \boldsymbol{C} \boldsymbol{B}^{-1} \text { irreducible },
\end{aligned}
$$

then $\boldsymbol{A}^{-1} \geq \boldsymbol{O}$.

Splittings

- Splitting $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$.
- If

$$
\begin{aligned}
& \boldsymbol{e}^{\mathrm{T}} \boldsymbol{A} \geq \boldsymbol{0}^{\mathrm{T}}, \\
& \boldsymbol{B}^{-1} \geq \boldsymbol{O}, \\
& \boldsymbol{C} \boldsymbol{B}^{-1} \geq \boldsymbol{O} \\
& \boldsymbol{C} \boldsymbol{B}^{-1} \text { irreducible },
\end{aligned}
$$

then $\boldsymbol{A}^{-1} \geq \boldsymbol{O}$.

- These conditions are only sufficient.

Monotonicity criteria

A block-tridiagonal

Monotonicity criteria

- $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$,
\boldsymbol{A} block-tridiagonal

Monotonicity criteria

- $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$,
- $\boldsymbol{B}=$ diagonal blocks,
\boldsymbol{A} block-tridiagonal

Monotonicity criteria

- $\boldsymbol{A}=\boldsymbol{B}-\boldsymbol{C}$,
- $\boldsymbol{B}=$ diagonal blocks,
- $\boldsymbol{-} \boldsymbol{C}=$ offdiagonal blocks,
\boldsymbol{A} block-tridiagonal

Monotonicity criteria

- $A=B-C$,
- $\boldsymbol{B}=$ diagonal blocks,
- $\boldsymbol{- C}=$ offdiagonal blocks,
- Different orderings yield different conditions.
\boldsymbol{A} block-tridiagonal

Monotonicity criteria

- $A=B-C$,
- $\boldsymbol{B}=$ diagonal blocks,
- $\boldsymbol{-}$ C offdiagonal blocks,
- Different orderings yield different conditions.
- Use rowwise or columnwise orderings.
\boldsymbol{A} block-tridiagonal

Rowwise ordering

$$
\begin{aligned}
& m_{1}^{i, j}>0 \\
& m_{2}^{i, j}<0 \\
& m_{6}^{i, j}<0 \\
& m_{4}^{i, j}<0 \\
& m_{8}^{i, j}<0 \\
& m_{1}^{i, j}+m_{2}^{i, j}+m_{6}^{i, j}>0 \\
& m_{2}^{i, j} m_{4}^{i, j-1}-m_{3}^{i, j-1} m_{1}^{i, j}>0 \\
& m_{6}^{i, j} m_{4}^{i, j-1}-m_{5}^{i, j-1} m_{1}^{i, j}>0 \\
& m_{2}^{i, j} m_{8}^{i, j+1}-m_{9}^{i, j+1} m_{1}^{i, j}>0 \\
& m_{6}^{i, j} m_{8}^{i, j+1}-m_{7}^{i, j+1} m_{1}^{i, j}>0
\end{aligned}
$$

Columnwise ordering

$$
\begin{aligned}
& m_{1}^{i, j}>0 \\
& m_{2}^{i, j}<0 \\
& m_{4}^{i, j}<0 \\
& m_{6}^{i, j}<0 \\
& m_{8}^{i, j}<0 \\
& m_{1}^{i, j}+m_{4}^{i, j}+m_{8}^{i, j}>0 \\
& m_{4}^{i, j} m_{2}^{i-1, j}-m_{3}^{i-1, j} m_{1}^{i, j}>0 \\
& m_{4}^{i, j}>0 \\
& m_{6}^{i, j+1, j}-m_{5}^{i+1, j} m_{1}^{i, j}>0 \\
& m_{2}^{i-1, j}-m_{9}^{i-1, j} m_{1}^{i, j}>0 \\
& m_{8}^{i, j} m_{6}^{i+1, j}-m_{7}^{i+1, j} m_{1}^{i, j}>0
\end{aligned}
$$

Local monotonicity criteria

Local monotonicity criteria

- Different orderings yield different criteria.

Local monotonicity criteria

- Different orderings yield different criteria.
- Local, explicit criteria apply for each grid cell.

Local monotonicity criteria

- Different orderings yield different criteria.
- Local, explicit criteria apply for each grid cell.
- Criteria apply to general cases of heterogeneity and geometry.

Local monotonicity criteria

- Different orderings yield different criteria.
- Local, explicit criteria apply for each grid cell.
- Criteria apply to general cases of heterogeneity and geometry.
- Agreement with numerical observations.

Homogeneous medium, uniform grid

Homogeneous medium, uniform grid

$$
\begin{aligned}
m_{1} & >0 \\
\max \left\{m_{2}, m_{4}\right\} & <0 \\
m_{1}+2 \max \left\{m_{2}, m_{4}\right\} & >0 \\
m_{2} m_{4}-\max \left\{m_{3}, m_{5}\right\} \cdot m_{1} & >0
\end{aligned}
$$

Homogeneous medium, uniform grid

$$
\begin{aligned}
m_{1} & >0 \\
\max \left\{m_{2}, m_{4}\right\} & <0 \\
m_{1}+2 \max \left\{m_{2}, m_{4}\right\} & >0 \\
m_{2} m_{4}-\max \left\{m_{3}, m_{5}\right\} \cdot m_{1} & >0
\end{aligned}
$$

Monotonicity

Monotonicity

Homogeneous medium
Uniform grid

Monotonicity

Homogeneous medium
Uniform grid

Monotonicity

Define

Homogeneous medium
Uniform grid

$$
\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]=\frac{1}{V}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]^{\mathrm{T}} \boldsymbol{K}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]
$$

Monotonicity

Define

Homogeneous medium Uniform grid

$$
\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]=\frac{1}{V}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]^{\mathrm{T}} \boldsymbol{K}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]
$$

Ellipticity implies

$$
c \leq \sqrt{a b}
$$

Monotonicity

Define

Homogeneous medium Uniform grid

$$
\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]=\frac{1}{V}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]^{\mathrm{T}} \boldsymbol{K}\left[\begin{array}{ll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2}
\end{array}\right]
$$

Ellipticity implies

$$
c \leq \sqrt{a b}
$$

Monotonicity \& conservation \& exact solution for uniform flow imply

$$
c \leq \min \{a, b\}
$$

Monotonicity

Monotonicity

Assume $a \leq b$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity:

$$
\frac{c}{b} \leq \frac{a}{b}
$$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity:

$$
\frac{c}{b} \leq \frac{a}{b}
$$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity:

$$
\frac{c}{b} \leq \frac{a}{b}
$$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity:

$$
\frac{c}{b} \leq \frac{a}{b}
$$

Monotonicity

Assume $a \leq b$

Ellipticity:

$$
\frac{c}{b} \leq \sqrt{\frac{a}{b}}
$$

Monotonicity:

$$
\frac{c}{b} \leq \frac{a}{b}
$$

Layered media and uniform grids. $\mathrm{O}(0)$-method.

Layered media and uniform grids. $\mathrm{O}(0)$-method.

Layered media and uniform grids. $\mathrm{O}(0)$-method.

Outline

Motivation
Properties of model equation
First MPFA method
Second MPFA method
Convergence
Monotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Oscillations

Oscillations

Oscillations

O(0)-method
L-method

Oscillations

Oscillations

Oscillations

$$
\epsilon=\min _{j}\left\{\frac{\min _{i}\left[\boldsymbol{A}^{-1}\right]_{i, j}}{\max _{i}\left[\boldsymbol{A}^{-1}\right]_{i, j}}\right\}
$$

A case with no-flow boundary

A case with no-flow boundary

- pressure 0
- pressure 1

A case with no-flow boundary

- pressure 0
- pressure 1

Anisotropy 1:1000
Angle 67.5°
11×11 grid

11×11 grid

L-method

11×11 grid

L-method

O(0)-method

11×11 grid

L-method

O(0.5)-method

55×55 grid

L-method

O(0)-method

11×11 grid, Angle 45°

L-method

O(0)-method

No-flow boundary extrema

No-flow boundary extrema

- Continuous maximum principle ensures no extrema on no-flow boundaries (Hopf, 1952).

No-flow boundary extrema

- Continuous maximum principle ensures no extrema on no-flow boundaries (Hopf, 1952).
- No discrete no-flow boundary extrema when the matrix of coefficients is a diagonally dominant M-matrix.

No-flow boundary extrema

- Continuous maximum principle ensures no extrema on no-flow boundaries (Hopf, 1952).
- No discrete no-flow boundary extrema when the matrix of coefficients is a diagonally dominant M-matrix.
- For homogeneous media and uniform grids, the L-method yields an M-matrix whenever it is monotone, i.e., when $|c| \leq \min \{a, b\}$.

No-flow boundary extrema

- Continuous maximum principle ensures no extrema on no-flow boundaries (Hopf, 1952).
- No discrete no-flow boundary extrema when the matrix of coefficients is a diagonally dominant M-matrix.
- For homogeneous media and uniform grids, the L-method yields an M-matrix whenever it is monotone, i.e., when $|c| \leq \min \{a, b\}$.
- However, the $\mathrm{O}(\eta)$-method does not generally yield an M-matrix.

No-flow boundary extrema

- Continuous maximum principle ensures no extrema on no-flow boundaries (Hopf, 1952).
- No discrete no-flow boundary extrema when the matrix of coefficients is a diagonally dominant M-matrix.
- For homogeneous media and uniform grids, the L-method yields an M-matrix whenever it is monotone, i.e., when $|c| \leq \min \{a, b\}$.
- However, the $\mathrm{O}(\eta)$-method does not generally yield an M-matrix.
- No proof that discrete monotonicity prevents no-flow boundary extrema.

Monotonicity and absence of boundary extrema

Monotonicity and absence of boundary extrema

Monotonicity
\square

No boundary extrema

Monotonicity and absence of boundary extrema

Monotonicity
a / b

No boundary extrema

This indicates that monotone methods never yield solutions with discrete extrema on no-flow boundaries.

Outline

MotivationProperties of model equation
First MPFA method
Second MPFA method
ConvergenceMonotonicity
Local monotonicity conditions
Nonmonotone cases
Nonmatching grids

Nonmatching grids

Nonmatching grids

Nonmatching grids

Pressure

Normale flow density

Nonmatching grids

Pressure

Normale flow density
L^{2} convergence order: 1.7 for pressure and flow density

Two-phase flow

Two-phase flow

Saturation contours

Summary

Summary

- MPFA methods are well suited for reservoir simulation on quadrilateral grids.

Summary

- MPFA methods are well suited for reservoir simulation on quadrilateral grids.
- Good convergence and monotonicity properties can be shown for chosen stencils.

Summary

- MPFA methods are well suited for reservoir simulation on quadrilateral grids.
- Good convergence and monotonicity properties can be shown for chosen stencils.
- The solutions are exact for linear pressure fields.

Summary

- MPFA methods are well suited for reservoir simulation on quadrilateral grids.
- Good convergence and monotonicity properties can be shown for chosen stencils.
- The solutions are exact for linear pressure fields.
- Monotonicity conditions are generally more restrictive than L^{2} convergence conditions.

Summary

- MPFA methods are well suited for reservoir simulation on quadrilateral grids.
- Good convergence and monotonicity properties can be shown for chosen stencils.
- The solutions are exact for linear pressure fields.
- Monotonicity conditions are generally more restrictive than L^{2} convergence conditions.
- The L-method may also be used for nonmatching grids.

Neue Artikel

I. Aavatsmark, G.T. Eigestad and R.A. Klausen, Numerical convergence of the MPFA O-method for general quadrilateral grids in two and three dimensions, in: Compatible spatial discretizations, IMA Vol. Ser. 142, Springer, 2006, 1-21.
R.A. Klausen and R. Winther, Robust convergence of multi point flux approximations on rough grids, Numer. Math. 104 (2006), 317-337.

囯 J.M. Nordbotten, I. Aavatsmark and G.T. Eigestad, Monotonicity of control volume methods, To appear in Numer. Math.

囯 I. Aavatsmark, G.T. Eigestad, J.M. Nordbotten and B.T. Mallison, A compact MPFA method with improved monotonicity, Numer. Methods Partial Diff. Eqns. Submitted 2006.

[^0]:

