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Reservoir flow equations

I The equations of reservoir simulation contain variables
which have elliptic and hyperbolic character.

I The simulations are performed on nonorthogonal rough
grids.

I The medium is strongly heterogeneous.
I The permeability is often anisotropic.
I Here, we study control volume formulations for an elliptic

model equation on quadrilateral grids.
I This guarantees local conservation, important for the

hyperbolic part.
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Model equation

div q = Q in Ω

q = −K grad u in Ω

u = uD on ΓD

q · n = qN on ΓN
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Maximum principle

(Hopf’s first lemma)

Suppose
−div(K grad u) = q ≥ 0 in D.

Then u has no local minima in D (E. Hopf, 1927).

Green’s function for homogeneous Dirichlet boundary
conditions on Ω ⊂ D: G(ξ, x)

u(x) =

∫
Ω

G(ξ, x)q(ξ) dτξ

G(ξ, x) ≥ 0 ξ, x ∈ Ω
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Equivalent maximum principle

Suppose
−div(K grad u) = q ≥ 0 in D.

Then u has no local minima in D if and only if G(x , ξ) ≥ 0 in Ω
for all Ω ⊂ D with homogeneous Dirichlet boundary conditions
on ∂Ω.

K 1

K 2



Equivalent maximum principle

Suppose
−div(K grad u) = q ≥ 0 in D.

Then u has no local minima in D if and only if G(x , ξ) ≥ 0 in Ω
for all Ω ⊂ D with homogeneous Dirichlet boundary conditions
on ∂Ω.

K 1

K 2



Equivalent maximum principle

Suppose
−div(K grad u) = q ≥ 0 in D.

Then u has no local minima in D if and only if G(x , ξ) ≥ 0 in Ω
for all Ω ⊂ D with homogeneous Dirichlet boundary conditions
on ∂Ω.

K 1

K 2



Monotonicity

G(x , ξ) ≥ 0 implies that the operator T , defined by

T q =

∫
Ω

G(ξ, x)q dτξ,

is monotone in the sense that

q ≥ 0 ⇒ T q ≥ 0.

We must show that T is monotone for all Ω with homogeneous
Dirichlet boundary conditions on ∂Ω.
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Hopf’s second lemma

I div q = 0, where q = −K grad u in Ω.
I Maximum principle ⇒ Extrema lie on the boundary.
I E. Hopf (1952): If there is an extremum on the boundary,

then q · n 6= 0.
I Hence, extrema cannot occur on no-flow boundaries.

Ω

ΓD

ΓN : q · n = 0

•
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Regularity of the solution

u ∈ H1(Ω)

q ∈ H(div,Ω)

I Therefore, u and q · n should have the same trace from
both sides of an interface.

I In 1D, continuity of potential and flux yields a harmonic
averaging of the permeability K .

I Tikhonov and Samarskij (1962) showed that harmonic
averaging is crucial for maintaining the order of
convergence for piecewise continuous K .

I Method: Generalize harmonic averaging to 2D and 3D by
requiring continuity in flux and (weak) continuity in
potential.
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Control-volume formulation

Ωi

∫
∂Ωi
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O-method

x1 x2

x4x3

Cells with common corner

x1 x2

x4x3

•
•

•
• x̄1

x̄4
x̄2x̄3

Interaction volume

I Determine the flux through the half edges from the
interaction of linear potentials in the four cells.

I Require continuous potential at x̄ i and continuous flux
through the half edges.
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Flux equations in an interaction region
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⇒ Local explicit expression for the half-edge fluxes
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Flux expression
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Flux stencil
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j=1

ti,j = 0

Multipoint flux approximation (MPFA)
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3D stencil

In 3 dimensions, the interaction volume contains 8 cells. The
flux stencil has 18 cells, and the cell stencil has 27 cells.

Interaction volume Cell stencil
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Polygonal and triangular grids
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MPFA O-method

I For non-parallelogram quadrilaterals with strong
irregularity, convergence may be lost.

I For high skewness combined with strong aspect or
anisotropy ratio, oscillating solutions may occur.

Anisotropy ratio 1 : 1000
θ = 30◦

Square grid
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Challenges

I Are there MPFA-methods with a larger domain of validity
for convergence and monotonicity?

I Are there methods which behave less oscillatory when
monotonicity cannot be assured?

I Does such a new method have disadvantages?
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L-method

L-shaped coupling

Inside the “triangle”:
• Linear potential in each cell
• Full potential continuity
• Flux continuity
• 3 · 2 = 6 deg. of freedom
• 2 · 3 = 6 conditions
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Test cases, streamlines

Smooth solution:

Nonsmooth solutions:

u ∈ H2.29 u ∈ H1.79 u ∈ H1.24
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Perturbed parallelogram grid, aspect ratio 0.1, angle
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Flow around a corner, u ∈ H1.79
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Convergence

On rough quadrilateral grids, the simulation tests indicate that if
u ∈ H1+α, α > 0, then

‖uh − u‖L2 ∼ hmin{2,2α}

‖uh − u‖L∞ ∼ hmin{2,α}

‖(qh − q) · n‖L2 ∼ hmin{1,α}

On smooth quadrilateral grids, stronger flow density bounds
apply:

‖(qh − q) · n‖L2 ∼ hmin{2,α}

‖(qh − q) · n‖L∞ ∼ hmin{2,α−1}

These rates apply to “moderate” aspect ratios.
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Discrete monotonicity

Solution of differential equation with homogeneous Dirichlet
boundary conditions

u = T q,

where the operator T is a monotone operator.
Associated discrete system

Au = q.

The matrix A−1 is monotone if

A−1 ≥ O.

Then
q ≥ 0 ⇒ u ≥ 0.
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Discrete maximum principle

Natural discrete analogue of the maximum principle:

A−1 ≥ O

for all subgrids with homogeneous Dirichlet boundary
conditions.
The associated scheme is then called monotone.
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η = 0

A−1 6≥ O

Anisotropy ratio 1 : 10000
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Monotone matrices

Conditions for A−1 ≥ O

I For which matrices A does this hold?
I For which stencils does this hold?

−
∫

Ωi,j

div(K grad u) dτ ≈
9∑

k=1

mi,j
k uk
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I The matrix A is splitted into two matrices A = B − C.
I If

B−1 ≥ O,

B−1C ≥ O,

then the splitting A = B − C is weakly regular. It follows:

A−1 ≥ O ⇔ ρ(B−1C) < 1
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A block-tridiagonal

I A = B − C,
I B = diagonal blocks,
I −C = offdiagonal blocks,
I Different orderings yield

different conditions.
I Use rowwise or columnwise

orderings.



Monotonicity criteria

A block-tridiagonal

I A = B − C,

I B = diagonal blocks,
I −C = offdiagonal blocks,
I Different orderings yield

different conditions.
I Use rowwise or columnwise

orderings.



Monotonicity criteria

A block-tridiagonal

I A = B − C,
I B = diagonal blocks,

I −C = offdiagonal blocks,
I Different orderings yield

different conditions.
I Use rowwise or columnwise

orderings.



Monotonicity criteria

A block-tridiagonal

I A = B − C,
I B = diagonal blocks,
I −C = offdiagonal blocks,

I Different orderings yield
different conditions.

I Use rowwise or columnwise
orderings.



Monotonicity criteria

A block-tridiagonal

I A = B − C,
I B = diagonal blocks,
I −C = offdiagonal blocks,
I Different orderings yield

different conditions.

I Use rowwise or columnwise
orderings.



Monotonicity criteria

A block-tridiagonal

I A = B − C,
I B = diagonal blocks,
I −C = offdiagonal blocks,
I Different orderings yield

different conditions.
I Use rowwise or columnwise

orderings.



Rowwise ordering

mi,j
1 > 0

mi,j
2 < 0

mi,j
6 < 0

mi,j
4 < 0

mi,j
8 < 0

mi,j
1 + mi,j

2 + mi,j
6 > 0

mi,j
2 mi,j−1

4 −mi,j−1
3 mi,j

1 > 0

mi,j
6 mi,j−1

4 −mi,j−1
5 mi,j

1 > 0

mi,j
2 mi,j+1

8 −mi,j+1
9 mi,j

1 > 0

mi,j
6 mi,j+1

8 −mi,j+1
7 mi,j

1 > 0



Columnwise ordering
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6 < 0

mi,j
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I Different orderings yield different criteria.
I Local, explicit criteria apply for each grid cell.
I Criteria apply to general cases of heterogeneity and

geometry.
I Agreement with numerical observations.
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Ellipticity implies

c ≤
√
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Monotonicity & conservation & ex-
act solution for uniform flow imply

c ≤ min{a, b}.
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Layered media and uniform grids. O(0)-method.
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11× 11 grid, Angle 45◦
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No-flow boundary extrema

I Continuous maximum principle ensures no extrema on
no-flow boundaries (Hopf, 1952).

I No discrete no-flow boundary extrema when the matrix of
coefficients is a diagonally dominant M-matrix.

I For homogeneous media and uniform grids, the L-method
yields an M-matrix whenever it is monotone, i.e., when
|c| ≤ min{a, b}.

I However, the O(η)-method does not generally yield an
M-matrix.

I No proof that discrete monotonicity prevents no-flow
boundary extrema.
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Monotonicity and absence of boundary extrema
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with discrete extrema on no-flow boundaries.
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Summary

I MPFA methods are well suited for reservoir simulation on
quadrilateral grids.

I Good convergence and monotonicity properties can be
shown for chosen stencils.

I The solutions are exact for linear pressure fields.
I Monotonicity conditions are generally more restrictive than

L2 convergence conditions.
I The L-method may also be used for nonmatching grids.
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