IRSN	
NSTITUT	
DE RADIOPROTECTION	
ET DE SÛRETÉ	
NUCLÉAIRE	

Schéma éléments finis mixtes-volumes finis pour un modèle d'écoulements eau-gaz en milieux poreux

B. Amaziane, M. Dymitrowska, M. El Ossmani, et C. Serres

Journée Scientifique du GdR MoMaS 9 Octobre, 2006 Pau

PLAN

• MODÈLE MATHÉMATIQUE

- DISCRÉTISATION EFMH
- DISCRÉTISATION VF
- STABILITÉ L[∞] ET ESTIMATIONS BV
- RÉSULTATS DE CONVERGENCE
- RÉSULTATS NUMÉRIQUES
- CONCLUSION ET PERSPECTIVES

▲ 同 ▶ - ▲ 目 ▶ -

MODELE MATHEMATIQUE

On considère un modèle d'écoulement diphasique eau-gaz :

$$(S) \begin{cases} \text{Trouver} \left(S_{w}, S_{g}, P_{w}, P_{g}, \vec{q}_{w}, \vec{q}_{g}\right) \in \Omega \times]0, \tau] \text{tq} : \\ \frac{\partial}{\partial t} \left(\phi \rho_{w} S_{w}\right) + \text{div} \left(\rho_{w} \vec{q}_{w}\right) = 0, \quad (i) \\ \frac{\partial}{\partial t} \left(\phi \rho_{g} S_{g}\right) + \text{div} \left(\rho_{g} \vec{q}_{g}\right) = \rho_{g} Q_{g}, \quad (ii) \\ \vec{q}_{w} = -\frac{k_{r,w}}{\mu_{w}} \mathbf{K}(\mathbf{x}) \left(\nabla P_{w} - \rho_{w} \vec{g}\right), \\ \vec{q}_{g} = -\frac{k_{r,g}}{\mu_{g}} \mathbf{K}(\mathbf{x}) \left(\nabla P_{g} - \rho_{g} \vec{g}\right), \\ P_{g} - P_{w} = P_{c}(S_{w}), \\ S_{w} + S_{g} = 1, \end{cases}$$

• la loi de van Genuchten

$$P_{c}(S_{w}) = \frac{1}{\beta} \left(\frac{1}{S_{w,e}^{\frac{1}{m}}} - 1\right)^{\frac{1}{n}}, \ k_{r,w} = \sqrt{S_{we}} \left[1 - \left(1 - S_{we}^{1/m}\right)^{m}\right]^{2},$$

• la mobilité de la phase $\alpha = w, g$

$$\lambda_{lpha} = \lambda_{lpha}(S) = rac{k_{r,lpha}}{\mu_{lpha}}$$

- la mobilité totale $\lambda = \lambda_w + \lambda_g$
- la moyenne harmonique des mobilités

$$ar{\lambda} = ar{\lambda}(S) = rac{\lambda_w(S)\lambda_g(S)}{\lambda_w(S) + \lambda_g(S)}$$

• la fonction du flux fractionnaire

$$f_{lpha} = f_{lpha}(S) = rac{\lambda_{lpha}}{\lambda}$$

- la vitesse totale $ec{q} = ec{q}_w + ec{q}_g$
- la pression globale $P = \frac{P_w + P_g}{2} + \gamma(S)$

$$\gamma(S) = \frac{P_{c}(S)}{2} + \int_{S}^{1} f_{w} P_{c}'(\xi) d\xi,$$

イロト イヨト イヨト イヨト

$$\begin{split} \lambda \nabla P &= \lambda_w \nabla P_w + \lambda_g \nabla P_g \\ \vec{q} &= -\mathcal{K}(x)\lambda(\nabla P - \bar{\rho}\vec{g}), \, \bar{\rho} = \frac{\lambda_w \rho_w + \lambda_g \rho_g}{\lambda} \\ \frac{(i)}{\rho_w} + \frac{(ii)}{\rho_g} : \text{div } \vec{q} &= -\frac{\partial \phi}{\partial t} - \sum_{\alpha = w}^{\alpha = g} \frac{1}{\rho_\alpha} \left(\phi S_\alpha \frac{\partial \rho_\alpha}{\partial t} + \vec{q}_\alpha . \nabla \rho_\alpha\right) + Q_g. \\ &= \frac{1}{\rho_g} \frac{\partial \rho_g}{\partial t} = \beta_g \left(\frac{\partial P}{\partial t} + (1 - f_g) \frac{\partial P_c}{\partial t}\right) \\ &= \frac{1}{\rho_w} \frac{\partial \rho_w}{\partial t} = \beta_w \left(\frac{\partial P}{\partial t} - (1 - f_w) \frac{\partial P_c}{\partial t}\right) \\ &= \frac{1}{\rho_g} \nabla \rho_g = \beta_g \left(\nabla P + (1 - f_g) \nabla P_c\right), \\ &= \frac{1}{\rho_w} \nabla \rho_w = \beta_w \left(\nabla P - (1 - f_w) \nabla P_c\right), \\ &= \beta_\alpha = \frac{1}{\rho_\alpha} \frac{\partial \rho_\alpha}{\partial P_\alpha}. \end{split}$$

MODELE MATHEMATIQUE...

$$\begin{aligned} \operatorname{div} \ \vec{q} &= -\frac{\partial \phi}{\partial t} - \phi \big(S_{w} \beta_{w} + S_{g} \beta_{g} \big) \frac{\partial P}{\partial t} - \phi \big(S_{g} \beta_{g} f_{w} - S_{w} \beta_{w} f_{g} \big) \frac{\partial P_{c}}{\partial t} \\ &+ \big(\beta_{g} \vec{q}_{g} + \beta_{w} \vec{q}_{w} \big) \cdot \nabla P + \big(\beta_{g} f_{w} \vec{q}_{g} - \beta_{w} f_{g} \vec{q}_{w} \big) \nabla P_{c} + Q_{g}, \end{aligned}$$

ou encore

$$\operatorname{div} \vec{q} + \phi(S_w \beta_w + S_g \beta_g) \frac{\partial P}{\partial t} = -\frac{\partial \phi}{\partial t} + Q_g - \phi N \mathcal{H}_{\#}(\mathcal{H})_{\#}(\mathcal{H}_{\#}(\mathcal{H})(\mathcal{H}_{\#}(\mathcal{H})_{\#}(\mathcal{H})_{\#}(\mathcal{H}))))))))))}))))))))))$$

イロト イヨト イヨト イヨト 三油

MODELE MATHEMATIQUE ...

Si on suppose que $\rho_w=Cte$ (l'eau est incompressible) et que $\rho_g=\sigma_g P_g$ (gaz parfait)

Pression globale

$$\begin{cases} \vec{q} = -\mathbf{K}(\mathbf{x})\Lambda(S) \ (\nabla P - \overline{\rho}\vec{g}), & \text{dans } \Omega \times]0, \tau] \\ \beta(P,S)\frac{\partial P}{\partial t} + \text{div } \vec{q} = Q_g & \text{dans } \Omega \times]0, \tau] \\ \beta(P,S) = \phi \frac{1-S}{P - \eta(S)} + \frac{\partial \phi}{\partial P} \end{cases}$$

$$\eta(S) = \int_S^1 f_w(\xi) P'_c(\xi) d\xi$$

Saturation en eau

$$\frac{\partial}{\partial t} (\phi \rho_w S) + \operatorname{div} \left[\rho_w f_w \vec{q} + \rho_w \overline{\lambda}(S) \mathbf{K}(\mathbf{x}) (\rho_w - \rho_g) \vec{g} \right] - \operatorname{div} \left(\rho_w \mathbf{K}(\mathbf{x}) \nabla \alpha(S) \right) = 0 \quad \text{ dans } \Omega \times]0, \tau]$$

 $\alpha(S) = -\int_0^S \overline{\lambda}(\xi) P'_c(\xi) d\xi$

イロト イヨト イヨト イヨト

SCHÉMA IMPES EFMH-VF

(日本) (日本)

토 > 토

Maillage dual de Voronoï

Λ_h = (T_i)_{i=0,...,Ne} triangulation admissible de Ω.
Σ_h = (M_i)_{i=0,...,Ns} Maillage dual de Voronoï.

DISCRETISATION EFMH

Soit $(\mathcal{T}_h)_{h>0}$ une triangulation régulière de Ω . $T \in (\mathcal{T}_h)_{h>0}$: triangle, $L \in T$ arête de T. On pose : $\beta = \frac{\beta^n}{\Delta t^n}$, $P^{n+1} = P$, $\vec{q}^{n+1} = \vec{q}$, $Q = Q_g^{n+1} + P^n \frac{\beta_t^n}{\Delta t^n}$, $A(x) = \Lambda^n K$, $P_D^{n+1} = P_D$ et $q_N^{n+1} = q_N$, avec $P = P_D / \Gamma_D$ et $\vec{q}.\vec{n} = q_N / \Gamma_N$

$$\begin{cases} \int_{\mathcal{T}} A^{-1} \vec{q}_h \cdot \vec{s}_h \, d\mathcal{T} - \int_{\mathcal{T}} P_h \text{div } \vec{s}_h \, d\mathcal{T} + \sum_{L \in \mathcal{T}} \int_L \lambda_h \vec{s}_h \cdot \vec{n} \, dL = 0 \quad \forall \vec{s}_h \in RT_0 \\ \int_{\mathcal{T}} \beta P_h w_h \, d\mathcal{T} + \int_{\mathcal{T}} w_h \text{div } \vec{q}_h \, d\mathcal{T} = \int_{\mathcal{T}} Qw_h \, d\mathcal{T} \qquad \forall w_h \in M^h \\ \sum_{\mathcal{T} \in \mathcal{T}_h} \sum_{L \in \mathcal{T}} \int_L \mu_h \vec{q}_h \cdot \vec{n} \, dL = \sum_{L \in \Gamma_N} \int_L q_N \mu_h \, dL \qquad \forall \mu_h \in L_0^h \end{cases}$$

 RT_0 est l'espace de Raviart-Thomas de plus bas degré.

- Etape 1 : Résoudre un système linéaire avec une matrice symétrique définie positive pour λ_h.
- Etape 2 : Résoudre un système linéaire 3 × 3 sur chaque élément pour obtenir q_h et p_h.

SVF Semi-Implicite

- Approximation explicite pour le terme de Convection : Schéma de Godunov.
- Approximation EF \mathcal{P}_1 implicite pour le terme de Diffusion.

SVF Semi-Implicite :

$$S_{M_{j}^{n+1}} = \frac{\phi_{M_{j}}^{n}}{\phi_{M_{j}}^{n+1}} \frac{\rho_{w,M_{j}}^{n}}{\rho_{w,M_{j}}^{n+1}} S_{M_{j}^{n}} + \frac{\Delta t_{n}}{\phi_{M_{j}}^{n+1} |M_{j}|} \sum_{I \in \partial M_{j}} (f_{w}(S_{M_{I}}^{n}) - f_{w}(S_{M_{j}}^{n}))(-\vec{q}_{I} \cdot \vec{n}_{M_{j},I})^{+} |I| + \frac{\Delta t_{n}}{\phi_{M_{j}}^{n+1} |M_{j}|} \sum_{I \in \partial M_{j} \setminus \Gamma} \mathbf{K}(\mathbf{x})_{I} \Big(\alpha(S_{M_{I}}^{n+1}) - \alpha(S_{M_{j}}^{n+1}) \Big) \frac{D_{M_{j}I}}{\delta_{M_{j}I}} |I|$$

où $D_{M_j l} = -\frac{|T|}{|l|} \delta_{M_j l} \nabla N_{M_l, T} \cdot K_T \nabla N_{M_j, T}$ avec $N_{\Omega_l, T}$ sont les fonctions de base d'élément fini \mathcal{P}_1 et $K_T = \frac{1}{|T|} \int_T \mathbf{K}(\mathbf{x}) dT$.

- Pour cette approximation on a : $0 < D_{-} \le D_{M_{j}l} \le D^{+} < \infty$.
- Conservation de la masse sur chaque élément, principe du maximum discret, hétérogénéités anisotropiques .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Stabilité L^{∞} et Estimations BV

• Sous certaines hypothèses sur les données et la condition $CFL := \frac{\Delta t_n}{h} \left(C_{q,h}^n \sup_{0 \le S \le 1} f'_w(S) \right) \le 1$ $C_{q,h}^n = \max_{M_j} \sum_{l \in \partial M_i} \frac{h |l| (-\vec{q}_l \cdot \vec{n}_{M_j,l})^+}{\phi_M^{n+1} |M_j|}$

le schéma est L^{∞} stable, de plus,

 $0 \leq \mathbf{S}_{\mathbf{M}_{j}}^{n} \leq 1, \ \forall n, j$

• Sous certaines hypothèses sur les données et la condition CFL, nous avons les estimations *BV* suivantes :

$$\sum_{\substack{n,j \\ n,j}} \Delta t^n |M_j| \left(\alpha(S_{M_j}^{n+1}) - \alpha(S_{M_j}^n) \right)^2 \le C \Delta t,$$
$$\sum_{n,j} \Delta t^n |I| \left(\alpha(S_{M_l}^n) - \alpha(S_{M_j}^n) \right)^2 \le Ch,$$

Théorème

Sous certains hypothèses sur les données et la condition CFL la solution approchée S_h converge vers S dans $L^2(Q)$, \vec{q}_h converge vers \vec{q} et p_h converge vers p qd h et Δt tendent vers zero.

 Idée de la preuve : On utilise une formulation faible pour l'équation de saturation et pour l'équation de pression, le processus de convergence est obtenu en utilisant la stabilité L[∞], estimations BV

Résultats Numériques Test : CU

Figure: Domaine de calcul

Figure: Conditions initiales et aux bords

< 17 b

Paramètres physiques retenus

1.000e+00		# Viscosite de l'eau $#$							
1.0000	e-02	#	Viscosite	du gaz #	:				
1.000e	+03	# I	Densite de	l'eau #					
8.0000e-02		# Densite du gaz $#$							
0.0000	e+00	#	Coeff. de	compres	sibilites	s de l'	eau 🗧	#	
8.0000	e-03	#	Coeff. de	compressi	bilites	du ga	z #		
2.3000	e-06	# Coeff. de compressibilites du solide $#$							
Kxx	Кху	Kyy	ϕ	Pe	n _{VG}	Swr	S _{gr}		
$5e^{-09}$	0.0	$5e^{-09}$	$3.5e^{-01}$	$6.0e^{+01}$	1.417	0.0	0.0	(galerie)	
$1e^{-11}$	0.0	$1e^{-11}$	$1.5e^{-01}$	$2.0e^{+02}$	1.54	0.0	0.0	(bouchon)	
$1e^{-13}$	0.0	$1e^{-13}$	$3.5e^{-01}$	$1.8e^{+03}$	1.61	0.0	0.0	(bentonite)	
$5e^{-09}$	0.0	$5e^{-09}$	$3.6e^{-01}$	$6.0e^{+01}$	1.40	0.0	0.0	(alveole)	
$5e^{-09}$	0.0	$5e^{-09}$	3.6e ⁻⁰¹	$6.0e^{+01}$	1.40	0.0	0.0	(BO)	
$5e^{-11}$	0.0	$5e^{-11}$	$1.6e^{-01}$	$5.0e^{+01}$	1.50	0.0	0.0	(EDZ)	
$5e^{-14}$	0.0	$5e^{-14}$	$1.5e^{-01}$	$1.5e^{+03}$	1.49	0.0	0.0	(argile)	

イロト イヨト イヨト イヨト

Lois physiques

Les perméabilités relatives

(ロ) (四) (日) (日) (日)

Temporal evolution of pw, pg and Pc

(□) (∅) (E) (E) (E)

<ロ> (四) (四) (注) (注) (注) (三)

Temporal evolution of water saturation

Résultats Numériques Test : Couplex-gaz

Figure: Conditions initiales et aux bords

・ロト ・ 日ト ・ モト

∃ ⊳

7.9800e-04 # Viscosite de l'eau #9.0000e-06 # Viscosite du gaz # 9.9571e+02 # Densite de l'eau #3.16000e-07 # Densite du gaz # 4.5000e-10 # Coeff. de compressibilites de l'eau #1.0000e-07 # Coeff. de compressibilites du gaz #4.5000e-10 # Coeff. de compressibilites du solide #Kxx Kxy Kyy ϕ P_e n_{VG} S_{wr} S_{gr} $5e^{-21}$ 0.0 $5e^{-20}$ 1.5 e^{-01} 15.0 e^{+06} 1.5 0.4 0.0 (COX) $1e^{-18}$ 0.0 $1e^{-18}$ $1.5e^{-01}$ $5.0e^{+06}$ 1.5 0.2 0.0 (EDZE) $1e^{-16}$ 0.0 $1e^{-16}$ $1.6e^{-01}$ $2.0e^{+06}$ 1.5 0.1 0.0 (EDZR) $1e^{-18}$ 0.0 $1e^{-18}$ $3.0e^{-01}$ $2.0e^{+06}$ 1.54 0.01 0.0 (Béton) $1e^{-12}$ 0.0 $1e^{-12}$ $1.0e^{+00}$ $5.0e^{+04}$ 1.50 0.01 0.0 (Jeux) $1e^{-19}$ 0.0 $1e^{-19}$ $1.5e^{-01}$ $2.0e^{+06}$ 1.54 0.01 0.0 (Béton de colis) $1e^{-15}$ 0.0 $1e^{-15}$ 2.5 e^{-01} 3.0 e^{+04} 1.5 0.01 0.0 (Alveole)

・ロト ・個ト ・ヨト ・ヨト 三星 …

Lois physiques

Permeabilites relatives

Mustapha El Ossmani GdR MoMaS, 9 Oct, 2006 Pau

▲ 御 ▶ - ▲ 臣 ▶

< 三→

Saturation of water: step = 0, t=0.000000"years Saturation of gaz: step = 0, t=0.000000"years

イロト イヨト イヨト イヨト

Mustapha El Ossmani GdR MoMaS, 9 Oct, 2006 Pau

▲ 御 ▶ - ▲ 臣 ▶

< ∃→

・ロト ・四ト ・ヨト ・ヨト

æ

CONCLUSION ET PERSPECTIVES

- Développement d'un schéma IMPES EFMH-VF pour un écoulement diphasique sans échange.
- Application pour simuler le transfert du gaz autour d'un stockage des déchets nucléaires.
- Stabilité, estimations L^{∞} et BV et Convergence.

Perspectives

- Choix d'un modèle compositionnel.
- Développement d'un schéma VF Implicite pour un écoulement diphasique eau-gaz avec échange
- Application : exercice Couplex-Gaz

(日) (日) (日) (日) (日)