MODELING BY UPSCALING OF AN UNDERGROUND WASTE DISPOSAL SITE, POSSIBLY DAMAGED

A. BOURGEAT
MCS, Université Lyon1,
E.MARUŠIĆ-PALOKA
Department of Mathematics, University of Zagreb

PAU 12 December 2003
Experimental program in the Meuse/Haute Meuse URL

conceptual model of radionuclides transport

Tithonian: the only water resource

infiltration area

direct link with outlet (preliminary PA)

outlet area for diffusion

dominating process: diffusion

one-level disposal in the C-O mid-plan

PAU 12 December 2003
1 General model

\[R\omega \frac{\partial \rho}{\partial t} - \nabla \cdot (A \nabla \rho) + (V \cdot \nabla) \rho + \lambda R\omega \rho = 0 \] \hspace{1cm} (1)

- \(R \) the latency retardation factor,
- \(\omega \) the porosity,
- \(v \) the Darcy’s velocity
- \(\lambda = \frac{\log 2}{T} \); \(T \) the element radioactivity half life time
- according to the units width and their length we consider a storage 2D vertical section
- Iodine \(^{129}I\) has half life time \(T = 1.57 \times 10^7 \) years and is releasing during a time \(t'_m = 8 \times 10^3 \) years, with intensity \(\Phi' = 10^{-1} \).
With characteristic length $L \simeq 10^3 m$, and with characteristic time, the diffusion time $T_\alpha = \frac{\omega L^2 R}{|D|}$ in the host layer; With $x = \frac{x'}{L}$, $t = \frac{t'}{T_\alpha}$, then:

the thickness of the host layer and of the units are respectively of order $\varepsilon \simeq 10^{-1}$ and $\varepsilon^2 \simeq 10^{-2}$;

the rescaled releasing time, $t_m = \frac{t'_m}{T_\alpha} \simeq 10^{-3}$ is then very small compared to the total time $T = T/T_\alpha \simeq 1$ and to the half time of ^{129}I, $\tau = \frac{T}{T_\alpha} \simeq O(1)$; but the leaking flux during this short releasing time is now, after renormalization, $\Phi = \Phi' \times L$, of order 10^2.
Figure 1: The three layers of soil containing the units
Figure 2: Units of Containers, after renormalization $x = \frac{x'}{L}$
2 The Equations

\[\omega^e \frac{\partial \varphi^e}{\partial t} - \text{div} (A^e \nabla \varphi^e) + (v^e \cdot \nabla) \varphi^e + \lambda \omega^e \varphi^e = 0 \quad \text{in } \Omega^T_{e} (2) \]
\[\varphi^e(0, x) = \varphi_0(x) \quad x \in \Omega^e \]
\[n \cdot \sigma = n \cdot (A^e \nabla \varphi^e - v^e \varphi^e) = \Phi(t) \quad \text{on } \Gamma^T_{e} \]
\[\varphi^e = 0 \quad \text{on } S^1, \]
\[n \cdot (A^e \nabla \varphi^e - v^e \varphi^e) = 0 \quad \text{on } S^2 \]

with

\[A^e(x_2) = A \left(\frac{x_2}{\varepsilon} \right); \quad v^e(x, t) = v(x, \frac{x_2}{\varepsilon}, t); \quad \omega^e(x_2) = \omega(x_2/\varepsilon). \]
(I) From the Disposal Units to a Global homogenized Repository model
3 A priori estimates

\[\| \varphi_\varepsilon \|_{L^\infty(0,T;L^2(\Omega))} \leq C \quad (8) \]
\[\| \varphi_\varepsilon \|_{L^2(0,T;H^1(\Omega_\varepsilon))} \leq C \quad (9) \]

give

\[\varphi_\varepsilon \rightharpoonup \varphi \quad \text{weak* in } L^\infty(0,T;L^2(\Omega)) \quad (10) \]
\[\nabla \varphi_\varepsilon \rightharpoonup \nabla \varphi \quad \text{weakly in } L^2(0,T;L^{\beta*}(\Omega)) \quad \text{for } \beta < 2 \quad (11) \]
\[\varphi_\varepsilon \rightharpoonup \varphi \quad \text{weak* in } L^2(0,T;M(\Omega)) \quad \text{for } \beta = 2 \quad (12) \]

\[\beta^* = \frac{2\beta}{3\beta - 2}. \]
and $\varphi \in L^2(0, T; H^1(\Omega)) \cap L^\infty(0, T; L^2(\Omega))$;

$$\omega^2 \frac{\partial \varphi}{\partial t} - \text{div} (A^2 \nabla \varphi) + (v^2 \cdot \nabla) \varphi + \lambda \omega^2 \varphi = 0 \text{ in } \tilde{\Omega}^T$$ (13)

$$\varphi(x, 0) = \varphi_0(x) \quad x \in \tilde{\Omega} = \Omega \setminus \Sigma$$ (14)

$$\varphi = 0 \quad \text{on } S_1$$ (15)

$$n \cdot (A^2 \nabla \varphi - v^2 \varphi) = 0 \quad \text{on } S_2$$ (16)

$$[\varphi] = 0, \quad [e_2 \cdot (A^2 \nabla \varphi - v^2 \varphi)] = -|\tilde{M}| \Phi \quad \text{on } \Sigma,$$ (17)

where $[\cdot]$ denotes the jump over Σ, and $|\tilde{M}|$ stands for the limit of a normalized unit M_ε area.
Figure 3: A renormalized unit M_ϵ, in a period, after renormalization $y = x/\epsilon$; $S = 2|M| + O(\epsilon^{\beta-1}) = M_\epsilon$ area $\simeq |\widetilde{M}|$
Proof.

\[0 = - \int_{\Omega^T_\varepsilon} \omega^\varepsilon \varphi_\varepsilon \frac{\partial \psi}{\partial t} - \int_{\Omega_\varepsilon} \varphi_0 \psi(\cdot, 0) + \int_{\Omega^T_\varepsilon} A^\varepsilon \nabla \varphi_\varepsilon \nabla \psi + \]

\[+ \int_{\Omega^T_\varepsilon} (\mathbf{v}^\varepsilon \cdot \nabla) \varphi_\varepsilon \psi + \int_{\Omega^T_\varepsilon} \omega^\varepsilon \lambda \varphi_\varepsilon \psi - \int_0^T \Phi \sum_{i \in J(\varepsilon)} \int_{\Gamma^i_\varepsilon} \psi \, d\Gamma^i_\varepsilon; \]

\[\int_{\Gamma^i_\varepsilon} \psi(x, t) \, d\Gamma^i_\varepsilon = (\psi(x^i_1, 0, t) + O(\varepsilon)) \mid \Gamma^i_\varepsilon \mid = \psi(x^i_1, 0, t) \mid \tilde{M} \mid \varepsilon + O(\varepsilon^\beta) , \]

\[\sum_{i \in J(\varepsilon)} \int_{\Gamma^i_\varepsilon} \psi(x, t) \, d\Gamma^i_\varepsilon \rightarrow \mid \tilde{M} \mid \int_{\Sigma} \psi(x_1, 0, t) \, dx_1 . \]
Remark 1 We do not need periodicity in space, of the units. The same proof holds whenever each unit is randomly placed in a mesh of an ε–net. The units do not even need to have the same shape as long as their thickness is small enough ($\ll \varepsilon$).

We may extend to a general case where the flux Φ depends also on the space $\Phi(x,t)$ and the units have different shapes $M_\varepsilon(x)$, then the right hand side of (17) has to be replaced by $\lim_{\varepsilon \to 0} |M_\varepsilon(x)|\Phi(x',t)$.
4 Asymptotic expansion

Figure 4: G_ε The inner layer; and $\Omega \setminus \overline{G_\varepsilon}$ the outer domain
In G_{ε}, the inner domain, we look for an asymptotic expansion of φ_{ε}:

$$
\varphi_{\varepsilon} \simeq \varphi_{0\varepsilon} + \varepsilon \left(\chi_{\varepsilon}^{k} \left(\frac{x}{\varepsilon} \right) \frac{\partial \varphi_{0\varepsilon}}{\partial x_{k}} + w_{\varepsilon} \left(\frac{x}{\varepsilon} \right) \Phi - \varphi_{0\varepsilon} \rho_{\varepsilon}^{k} \left(\frac{x}{\varepsilon} \right) v_{1k}^{1} \right) \equiv \varphi_{1\varepsilon} ,
$$

where $\varphi_{0\varepsilon}$ mimics the behaviour of φ but has two jumps respectively on $\Sigma_{\varepsilon}^{+} = \{ \varepsilon \log (1/\varepsilon) \} \times] - \delta/2, \delta/2 [$ and on $\Sigma_{\varepsilon}^{-} = \{-\varepsilon \log (1/\varepsilon) \} \times] - \delta/2, \delta/2 [$, instead of only one on Σ. The functions $\chi_{\varepsilon}^{k}, \rho_{\varepsilon}^{k}$ and w_{ε} are 1-periodic solutions in y_{1} of three auxiliary stationary diffusion type problems posed in an infinite strip

$$
G_{\varepsilon} = (] - 1/2, 1/2[\times \mathbb{R}) \backslash \mathcal{M}_{\varepsilon} .
$$
The “micro shape corrector”:

\[-\text{div} \left(A \nabla (\chi^k_\varepsilon + y_k) \right) = 0 \text{ in } G_\varepsilon\]
\[n \cdot A \nabla (\chi^k_\varepsilon + y_k) = 0 \text{ on } \partial M_\varepsilon ; \lim_{y_2 \to \infty} \nabla \chi^k_\varepsilon = 0, \quad (19)\]

Figure 5: The strip for local correctors; function \(\chi^2 \) along \(y_2 \) axis
The "source corrector":

\[- \text{div} (A \nabla \omega_\varepsilon) = 0 \text{ in } G_\varepsilon \]

\[\mathbf{n} \cdot A \nabla \omega_\varepsilon = 1 \text{ on } \partial M_\varepsilon ; \lim_{y_2 \to \pm \infty} A \nabla \omega_\varepsilon (y) = \mp \frac{1}{2} |\partial M_\varepsilon| \mathbf{e}_2 \]

Figure 6: The source corrector 2D plot and plots along the y_2 axis for different y_1 positions
The “convection corrector”:

$$-	ext{div} \left(\mathbf{A} \nabla \rho^k_\varepsilon \right) = 0 \quad \text{in} \quad G_\varepsilon$$

$$\mathbf{n} \cdot \left(\mathbf{A} \nabla \rho^k_\varepsilon + \mathbf{e}_k \right) = 0 \quad \text{on} \quad \partial \mathcal{M}_\varepsilon; \quad \lim_{y_2 \to \infty} \nabla \rho^k_\varepsilon = 0. \quad (21)$$
4.1 Matched expansion and error estimate

With the approximation:

\[F_\varepsilon = \begin{cases}
\varphi_\varepsilon^0 & \text{in } \Omega \setminus \overline{G_\varepsilon} \text{(outer expansion)} \\
\varphi_\varepsilon^0 + \varepsilon \left(\chi_\varepsilon^k \frac{x_k}{\varepsilon} \frac{\partial \varphi_\varepsilon^0}{\partial x_k} + w_\varepsilon \left(\frac{x}{\varepsilon} \right) \Phi - \varphi_\varepsilon^0 \rho_\varepsilon^k \left(\frac{x}{\varepsilon} \right) v_1^k \right) & \text{in } G_\varepsilon.
\end{cases} \] \hspace{1cm} (22)

Theorem 1 For any \(0 < \tau < 1 \) there exists a constant \(C_\tau > 0 \) non dependent on \(\varepsilon \), such that

\[|\varphi_\varepsilon - F_\varepsilon|_{L^2(0,T;H^1(B_\varepsilon))} \leq C_\tau \varepsilon^\tau, \] \hspace{1cm} (23)

where \(B_\varepsilon = \Omega \setminus \partial G_\varepsilon \).

The same estimate holds in \(L^\infty(0,T;L^2(\Omega_\varepsilon)) \) norm.
5 Conclusion

The expansion (22) clearly points out two important terms:

- the zero order term φ_0
- and the first order term $\varepsilon w_\varepsilon(\frac{x}{\varepsilon})\Phi$.

On one hand the diffusion in the low permeable layer around the units is small and on the other hand the containers are leaking intensively during a short time; then: during that short time the first order term $\varepsilon w_\varepsilon(\frac{x}{\varepsilon})\Phi$ will dominate in φ_ε; and after this short time the diffusion will become dominant, i.e. φ_0 is now the most important term in the expansion.

Remark: The effects of the boundary layer caused by the non periodicity of the geometry on G_ε could be neglected for a $\varepsilon-$ order approximation.
Figure 7: 3D plot and 1D plot along the y_2 axis. Source term dominates. Discontinuity between inner and outer domain.
(II) Global homogenized Disposal Units model with a possibly damaged zone
Starting from a mathematical model describing the global behavior of one disposal unit of the underground waste repository,

Assuming it is made of a high number of containers sets, located inside a low permeable rock, lying on a hypersurface \(\Sigma \) and linked by parallel filled shafts, Fig:8; all the parallel shafts being connected at the top to a main shaft, also filled.

All the repository is embedded in a thin (100 m.) low permeability layer, called host layer, which is included between two higher permeability layers,

The convection field is given.
Figure 8: A part of a disposal unit, with 5 rows of containers sets and shafts
Denoting ε the ratio between the width of a unit (500 m.) and distance (50 m.) between two shafts

- \Rightarrow The containers set have a diameter, of order ε^γ, γ close to three.

- \Rightarrow In the renormalized model there are three scales: 1 for a disposal unit scale, ε for both the scale of a containers row and the shafts period, and ε^γ for the containers diameter.
Figure 9: Cell of periodicity Y containing a shaft-damaged cylinder $S =]-1/2,1/2[\times C$ and a containers set P_ε; $\varepsilon^\gamma =$diameter of P_ε.
6 The equations

\[\mathbf{v}^\varepsilon(x) = \begin{cases}
\mathbf{v}^h(x) & \text{in the host rock } \Omega_\varepsilon \setminus S_\varepsilon \\
\varepsilon^{-\beta} \mathbf{v}^d(x', x_2/\varepsilon; x_3/\varepsilon) & \text{in the shafts } S_\varepsilon
\end{cases} \]

\[\mathbf{A}^\varepsilon(x) = \begin{cases}
\mathbf{A}^h(x) & \text{in the host rock } \Omega_\varepsilon \setminus S_\varepsilon \\
d(x) \mathbf{I} + \varepsilon^{-\beta} \mathbf{A}^d(x_2, x_2/\varepsilon, x_3/\varepsilon) & \text{in the shafts } S_\varepsilon
\end{cases} \]

The convection in shafts goes only in the direction of the shafts \(\Rightarrow \)

\[\mathbf{A}^d(x_2, y_2, y_3) = a(x_2, y_2, y_3) \left(\mathbf{e}_1 \otimes \mathbf{e}_1 \right) \]
"Microscopic" model of a disposal unit

\[\omega^\varepsilon \frac{\partial \varphi^\varepsilon}{\partial t} - \text{div} (A^\varepsilon \nabla \varphi^\varepsilon) + (v^\varepsilon \cdot \nabla) \varphi^\varepsilon + \lambda \omega^\varepsilon \varphi^\varepsilon = 0 \quad \text{in} \ \Omega^\varepsilon_T \]

(24)

\[\varphi^\varepsilon(0, x) = \varphi_0(x) \quad x \in \Omega^\varepsilon \]

(25)

\[n \cdot (A^\varepsilon \nabla \varphi^\varepsilon - v^\varepsilon \varphi^\varepsilon) = \Phi^\varepsilon(t) \quad \text{on} \ \Gamma^\varepsilon_T \]

(26)

\[n \cdot (A^\varepsilon \nabla \varphi^\varepsilon - v^\varepsilon \varphi^\varepsilon) = \kappa (\varphi^\varepsilon - g^\varepsilon) \quad \text{on} \ \mathcal{K}^\varepsilon_T \cup \mathcal{H}^\varepsilon_T \]

(27)

\[\varphi^\varepsilon = 0 \quad \text{on} \ \mathcal{Z}^\varepsilon_T . \]

(28)

with \(\mathcal{K}^\varepsilon_T \) the shafts cylindrical surfaces, \(\mathcal{H}^\varepsilon_T \) the shafts tops, \(\mathcal{Z}^\varepsilon_T \) the Shafts Bottoms and \(\Gamma^\varepsilon \) the Containers sets boundary \(\times (O, T) \).
7 Results

- $\beta < 1$

We assume for the boundary flux:
Existance of a continuous function $\Phi(t)$;

$$\lim_{\varepsilon \to 0} \varepsilon^{\gamma-1} \Phi_\varepsilon(t) = \Phi(t) \quad \text{uniformly in } t.$$ (29)

and

$$g_\varepsilon = g = \begin{cases} g^h & \text{on the shafts cylindrical surfaces } \mathcal{K}_\varepsilon \\ g & \text{on the shafts tops } \mathcal{H}_\varepsilon \end{cases}.$$
The shafts do not make any contribution, i.e. the repository behaves as if they were not there. \(\varphi_\varepsilon \to \varphi \) weakly in \(L^2(0, T; W^{1,\gamma^*}(\Omega)) \) and weak* in \(L^\infty(0, T; L^2(\Omega)) \), where \(\varphi \) is the unique solution of a problem, of same type as the microscopic problem:

\[
\omega^h \frac{\partial \varphi}{\partial t} - \text{div} (A^h \nabla \varphi) + (v^h \cdot \nabla) \varphi + \lambda \omega^h \varphi = 0 \quad \text{in } \tilde{\Omega}^T;
\]

\[
\varphi(0, x) = \varphi_0(x), \quad x \in \tilde{\Omega} = \Omega \setminus \Sigma; \quad \varphi = 0 \quad \text{on } S^T;
\]

\[
[\varphi] = 0, \quad \text{and} \quad [e_3 \cdot A^h \nabla \varphi - (v^h \cdot e_3) \varphi] = -\Phi \mathcal{M} \quad \text{on } \Sigma.
\]

where \(\tilde{\Omega}^T = (\Omega \setminus \Sigma) \times]0, T[; S^T = \partial \Omega \times]0, T[\)

\[
[w](x') = w(x', 0+) - w(x', 0-) \), denotes the jump over \(\Sigma \) and \(\mathcal{M} \)
denotes the limit of the rescaled containers area, i.e.

\[
\mathcal{M} = \lim_{\varepsilon \to 0} \varepsilon^{1-\gamma} |\partial P_\varepsilon|.
\]
• $\beta = 1$

We assume for the behavior of the source term,

$$\lim_{\varepsilon \to 0} \Phi_\varepsilon(t) = \Phi(t) \text{ uniformly in } t,$$

while for g_ε we suppose

$$g_\varepsilon = \begin{cases}
g^h & \text{on the shafts cylindrical surfaces } \mathcal{K}_\varepsilon \\
\varepsilon^{-1} g^d & \text{on the shafts tops } \mathcal{H}_\varepsilon \end{cases}.$$
• $\beta = 1$

The processes, in and out of the damaged shafts are of same order and there are interactions between them.

$\varphi_\varepsilon \rightarrow \varphi_0$ weakly in $L^2(0, T; W^{1, \gamma^*}(\Omega))$ and $\varphi_\varepsilon \rightarrow \varphi^0 = \varphi(x_1, x_2, 0)$, $d\mu_\varepsilon(x) 2 - scale$, where φ is the unique solution of a coupled problem

$$\omega^h \frac{\partial \varphi}{\partial t} - \text{div} (A^h \nabla \varphi) + (v^h \cdot \nabla) \varphi + \lambda \omega^h \varphi = 0 \text{ in } \tilde{\Omega}^T; \quad (34)$$

$$\varphi(0, x) = \varphi_0(x) \text{ in } \tilde{\Omega}; \quad (35)$$

$$n \cdot (A^h \nabla \varphi - v^h \varphi) = \kappa(\varphi - g^h) \text{ on } S^T$$

• we should construct the test functions that satisfy the Dirichlet condition on $Z_\varepsilon^\varepsilon$, starting from functions from V.
• We need, for the integral

\[\mathcal{L}^\varepsilon \psi = \varepsilon^{1-\gamma} \int_{\Gamma_\varepsilon} \psi \]

\[\mathcal{L}^\varepsilon \in [H^1(\Omega)]', \text{ defined from } \psi \in H^1(\Omega) \quad (36) \]

to prove

\[\mathcal{L}^\varepsilon \rightarrow \mathcal{M} \delta_\Sigma \text{ strongly in } [H^1(\Omega)]' . \]