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The Lokshin model is non standard

Let (∂2
t + 2 η ∂

3
2
t + η2 ∂1

t )w − ∂2
x w = 0, t > 0, x ∈ ]0, 1[

with init. cond. w(t = 0) = 0 and ∂tw(t = 0) = 0,
and controlled dynamic boundary conditions at x = 0 ;
the system is being observed at x = 1.

the damping is modelled by a fractional derivative.

there is no simple energy property, unlike in the classical
cases of fluid (∂1

t w) or structural (−∂1
t ∂2

x w) dampings.
the spatial modes are no more orthogonal.
in the case of the Webster-Lokshin model, the coefficients
are variable with space : η 7→ η(x) .
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Analytic solution of a fractional PDE

Analytic solution of a fractional PDE

Let (∂2
t + 2 η ∂

3
2
t + η2 ∂1

t )w − ∂2
x w = 0, t > 0, x ∈ ]0, 1[

with init. cond. w(t = 0) = 0 and ∂tw(t = 0) = 0, and
dynamical boundary conditions of absorbing type
(a0b0 > 0, a1b1 > 0) and controlled at x = 0 : [a0 (∂t + η ∂

1
2
t ) + b0 ∂−x)] w(t , x = 0) = a0 (∂t + η ∂

1
2
t ) u(t)

[a1 (∂t + η ∂
1
2
t ) + b1 ∂x)] w(t , x = 1) = 0

with output : y(t) = w(t , x = 1). Then y = h ? u, with

h(t) =
+∞∑

n=−∞
cη

n

{
E 1

2
(ση+

n , t)− E 1
2
(ση−

n , t)
}
∈ L1(R+) ∩ C∞(R+)

where the ση±
n are the roots of σ2 + ησ = s0

n = −α0 + 2iπf 0
n .

BIBO stability comes from arg(ση±
n ) > π

4 ,∀n ∈ Z... Why ?
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Results on Fractional Differential Equations of commensurate orders

Fractional Differential Equations

For 0 < α < 1, consider the imput u – output y relation :

p∑
k=0

ak Dkαy(t) =

q∑
l=0

bl Dlαu(t),

It is a causal pseudo-differential system, the symbol of which is,
by Laplace transf. in some right-half plane C+

a := <e(s) > a :

H(s) =
Q(sα)

P(sα)
avec

∣∣∣∣∣∣∣∣∣∣∣
Q(σ) ,

l=q∑
l=0

bl σ
l

P(σ) ,
k=p∑
k=0

ak σk

.
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Results on Fractional Differential Equations of commensurate orders

Necessary and Sufficient Stability Condition

From the input-output viewpoint, the BIBO-stability result is as
follows, y = h ? u, with :

Theorem

BIBO stability ⇐⇒


q ≤ p

|arg σ| > απ
2 , ∀σ ∈ C, / P(σ) = 0

In which case, h has the long memory asymptotics :

h(t) ∼ K t−1−α as t → +∞.
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Results on Fractional Differential Equations of commensurate orders

Sketch of the proof

Algebraic tools can be used, since the orders are
commensurate to the same α : let P and Q two coprime
polynomials, and let R = Q/P the rational function, we get the
structure result :

Proposition

h(t) =
N∑

n=1

mn∑
m=1

rnm E?m
α (λn, t),

with R(σ) =
∑N

n=1
∑mn

m=1 rnm (σ − λn)
−m.

where E?m
α (λ, t) is a Mittag-Leffler function (a hypergeometric

special function), the LT of which is (sα − λ)−m.
For α = 1, it reduces to the well-known causal
polynomial–exponential 1

m! tm−1 exp(λ t).



Outline Motivation BIBO-stability of the Lokshin model Asymptotic stability of the Webster-Lokshin model Extensions Bibliography

Results on Fractional Differential Equations of commensurate orders

N. & S. Stability condition : an illustration

Stability of Eα(λ tα) with LT sα−1(sα − λ)−1, as a fct. of arg(λ).

Laplace plane : s σ-plane
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (I)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = 0

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (II)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = π/8

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (III)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = π/4

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (IV)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = 3π/8

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (V)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = π/2

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (VI)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = 3π/4

Real part Imaginary part
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Results on Fractional Differential Equations of commensurate orders

Mittag-Leffler functions in C (VII)

t 7→ Eα(λ tα) for α = 1
2 and arg(λ) = π

Real part Imaginary part
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Rewriting the model

Webster-Lokshin fractional PDE

For z ∈ (0, 1), with r(z) > 0, η(z), ε(z) ≥ 0, w(t , z) satisfies :

∂2
t w + η(z) ∂

3/2
t w + ε(z) ∂

1/2
t w − 1

r2 ∂z(r2 ∂zw) = 0 ;

with static boundary conditions in z = 0 and z = 1.
This is equivalent to the first-order system in (p, v) :

∂tp = −r−2 ∂zv − ε ∂
−1/2
t p − η ∂

1/2
t p ,

∂tv = −r2 ∂zp ,

p(z = 0, t) = 0 and v(z = 1, t) = 0 .

Use of standard DR for ∂
−1/2
t , and extended DR for ∂

1/2
t .
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Diffusive Pseudo-differential Operators

Standard DR : definitions

Let M a positive measureon R+ satisfying the well-posedness
condition (WP) :

cM ,
∫ ∞

0

dM
1 + ξ

< +∞ .

We define the dynamical system with input u ∈ L2(0, T ),
output y ∈ L2(0, T ) and state φ ∈ HM = L2(R+, dM) :

∂tφ(ξ, t) = −ξ φ(ξ, t) + u(t); φ(ξ, 0) = 0, ∀ ξ ∈ R+ ,

y(t) =

∫ +∞

0
φ(ξ, t) dM(ξ) .

Then, y = hM ? u where the impulse response can be
written as hM(t) =

∫∞
0 e−ξ t dM(ξ) for t > 0.

The transfer function is HM(s) =
∫∞

0
dM(ξ)
s+ξ , in C+

0 .
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Diffusive Pseudo-differential Operators

Standard DR : energy balance

The following energy balance is fulfilled, ∀T > 0 :∫ T

0
u(t) y(t) dt =

1
2

∫ +∞

0
φ(ξ, T )2 dM+

∫ T

0

∫ +∞

0
ξ φ(ξ, t)2 dM dt ,

where the right-hand side can be decomposed into two parts :
a storage function, evaluated at time T only,
Eφ(T ) := 1

2 ‖φ(T )‖2
HM

,
a residual energy dissipated along the time interval (0, T ).

Example : Mβ(dξ) , sin βπ
π ξ−β dξ for 0 < <e(β) < 1 fulfills (WP),

which gives rise to a diagonal realization of the fractional
integral operator of order β, the transfer function of which is
Hβ(s) = s−β.

Note : standard DR belong to the class of well-posed systems.
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Diffusive Pseudo-differential Operators

Extended DR : definitions

Let N a positive measure on R+ satisfying the well-posedness
condition (WP).

We define the dynamical system with input u ∈ H1(0, T ),
output z ∈ L2(0, T ) and state φ̃ ∈ H̃N = L2(R+, ξ dN) :

∂t φ̃(ξ, t) = −ξ φ̃(ξ, t) + u(t) ; φ̃(ξ, 0) = 0 ∀ ξ ∈ R+ ,

z(t) =

∫ +∞

0
∂t φ̃(ξ, t) dN(ξ) =

∫ +∞

0

[
u(t) − ξ φ̃(ξ, t)

]
dN(ξ) .

Then, z = h̃N ? u = d
dt (hN ? u) with derivative in the sense

of distributions : the impulse response is the distribution
h̃N = d

dt

∫∞
0 e−ξ t dN(ξ). (N.B. One can also write

z = hN ? d
dt u in the sense of functions).

The transfer function reads H̃N(s) = s
∫∞

0
dN(ξ)
s+ξ , in C+

0 .
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Diffusive Pseudo-differential Operators

Extended DR : energy balance

The following energy balance is fulfilled, ∀T > 0 :∫ T

0
u(t) z(t) dt =

1
2

∫ +∞

0
ξ φ̃(ξ, T )2 dN+

∫ T

0

∫ +∞

0
(u−ξ φ̃)2 dN dt

where the right-hand side can be decomposed into two parts :
a storage function, evaluated at time T only,
Ẽeφ(T ) = 1

2 ‖φ̃(T )‖2eHN
,

a residual energy dissipated along the time interval (0, T ).

Example : Nα(dξ) , M1−α(dξ) = sin απ
π ξ−(1−α) dξ for

0 < <e(α) < 1 fulfills (WP), which gives rise to a diagonal
realization of the fractional derivative operator of order α, the
transfer function of which is H̃α(s) = s.s−(1−α) = s+α.

Note : Extended DR do not belong to the class of well-posed
systems, in general.



Outline Motivation BIBO-stability of the Lokshin model Asymptotic stability of the Webster-Lokshin model Extensions Bibliography

Existence and Uniqueness

Existence et uniqueness (I)

With L2
p = {p,

∫ 1
0 p2r2 dz < ∞}, L2

v = {v ,
∫ 1

0 v2r−2 dz < ∞},
and H = L2

p × L2
v × L2(0, 1; HM ; ε r2 dz)× L2(0, 1; H̃N ; η r2 dz),

the system can be put in the abstract form ∂tX +AX = 0,
where :

A


p
v
ϕ
ϕ̃

 =


r−2 ∂zv + ε

∫ +∞
0 ϕ dM + η

∫ +∞
0 [p − ξ ϕ̃] dN

r2 ∂zp
ξϕ− p
ξϕ̃− p

 ;

D(A) =

(p, v , ϕ, ϕ̃)T ∈ V ,

∣∣∣∣∣∣∣∣
p(0) = 0
v(1) = 0
(p − ξϕ) ∈ L2(0, 1; HM ; ε r2 dz)
(p − ξϕ̃) ∈ L2(0, 1; VN ; η r2 dz)

 .

with V = H1
p × H1

v × L2(0, 1; VM ; ε r2 dz)× L2(0, 1; H̃N ; η r2 dz).
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Existence and Uniqueness

Existence et uniqueness (II)

Theorem
The operator A : D(A) ⊂ H → H is maximal monotone.

The monotonicity of A comes from the energy identity :
∀X ∈ D(A),

(AX , X )H =

∫ 1

0
‖ϕ‖2eHM

ε r2 dz +

∫ 1

0
‖p − ξ ϕ̃‖2

HN
η r2 dz ≥ 0 .

Corollary
Hille-Yosida theorem enables to conclude to the existence and
uniqueness of a strong solution for the original problem.

Note : in case of dynamical boundary conditions, the
Kalman-Yakubovich-Popov lemma will be used to realize the
ouput impedance, which is a positive real rational function of s.
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Asymptotic stability : a difficult question

Internal asymptotic stability

The proof is difficult. Why ?
In fact, LaSalle’s invariance principle requires, in infinite
dimension, the hypothesis of precompactnes of the
trajectories ; but this latter hypothesis cannot be checked a
priori for diffusive realizations, since a diffusion equation in
an unbounded domain is hidden behind them, and the
canonical injection from H1(R) into L2(R) is not compact
(Rellich theorem does not apply).

The refined spectral analysis of the infinitesimal generator
−A of the semigroup on the Hilbert state H enables to use
the stability result by Arendt–Batty or Lyubich–Phong, et
helps prove the result of internal asymptotic stability ; the
proof is quite involved (Lax–Milgram theorem for the FDE,
and Fredholm alternative for the FPDE).
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Some numerical illustrations

Definition and Analysis of numerical schemes

Fractional derivatives are difficult to numerically
approximate, and usually involve hereditary algorithms,
thus turning into memory storage problems on the
computer.

Standard numerical approximations of the extended
system with DR enable to define memoryless numerical
schemes ; more precisely the schemes have finite
memory, once the

{
ξj

}
1≤j≤J have been chosen.

The proof of convergence of the numerical schemes is
based on discrete extended energy techniques, which
mimick the principle of the extended energy for the
continuous system.
Some Illustrations !
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Some numerical illustrations

Influence of parameter η (I)

Output signal. Wave & augmented (- -) energies

For a cylinder, in blue η = 0.1, in red η = 0.
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Some numerical illustrations

Influence of parameter η (II)

Output signal. Wave & augmented (- -) energies.

For a cylinder, in blue η = 0.2, in red η = 0.
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Some numerical illustrations

Influence of parameter η (III)

Output signal. Wave & augmented (- -) energies.

For a cylinder, in blue η = 0.5, in red η = 0.
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Some numerical illustrations

Example of a trapped modes

Output signal. Wave & augmented (- -) energies.

Trapped modes in a duct with two cones facing each other,
in blue ε = 0.2 and η = 0.05, in red ε = η = 0.
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Case of Non-Linear systems

Un résultat général

Theorem
Soit H un espace de Hilbert, soit A : D(A) ⊂ H → H un
opérateur maximal monotone, et F une fonction non-linéaire
F : H → H telle que le pb. d’évolution semi-linéaire :

∂tX + A X = F (X ), et X (0) = X0 ∈ D(A)

soit bien posé, pour t ∈ [0, Tmax), au sens de l’existence et de
l’unicité de X ∈ C1([0, Tmax); H) ∩ C0([0, Tmax); D(A)), une
solution forte.
Alors, pour deux OPD de type diffusif et positif, l’un standard
hM? et l’autre étendu par dérivation h̃N?, le pb.
pseudo-différentiel non-linéaire :

∂tX + hM ? X + h̃N ? X + A X = F (X ), et X (0) = X0 ∈ D(A)

est bien posé, pour t ∈ [0, T ′max), au sens d’une unique
solution forte X ∈ C1([0, T ′max); H) ∩ C0([0, T ′max); D(A)).
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Case of Non-Linear systems

Perturbation diffusive de systèmes non-linéaires
conservatifs

Remark

L’hypothèse du théorème précd́ent est vérifiée dans le cas où la
non-linéarité est localement lipschitzienne sur H.

Corollary
Si le système différentiel non-linéaire de départ est conservatif,
alors comme l’énergie étendue associée au système perturbé
est décroissante et bornée par sa valeur initiale, le résultat
d’existence locale se prolonge en un résultat d’existence
globale, i.e. T ′max = +∞.
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Case of Non-Linear systems

Résultats de simulation (I) : pendule linéaire

ϑ̈ + η ∂−β
t ϑ̇ + ϑ = 0, pour β = 0.75 et (ϑ0, ϑ̇0) = (3.5, 0).

(G) (C) (D)

(G) : Évolution de l’angle ϑ et de la vitesse angulaire ϑ̇,
(C) : Section du portrait de phase dans le plan (ϑ, ϑ̇),
(D) : Évolution des composantes diffusives
{φk (t) = φ(t , ξk )}1≤k≤K pour K = 25.
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Case of Non-Linear systems

Résultats de simulation (II) : pendule non-linéaire

ϑ̈ + η ∂−β
t ϑ̇ + sin(ϑ) = 0 ; β = 0.75 et (ϑ0, ϑ̇0) = (3.5, 0).

(G) (C) (D)

(G) : Évolution de l’angle ϑ et de la vitesse angulaire ϑ̇,
(C) : Section du portrait de phase dans le plan (ϑ, ϑ̇),
(D) : Évolution des composantes diffusives
{φk (t) = φ(t , ξk )}1≤k≤K pour K = 25.
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An open question : Webster-Lokshin FPDE with Bessel-Struve radiation impedance ?

Is the following radiation impedance diffusive of
the second kind ?

Bessel J1 and Struve H1 special functions

Real p. x = kR 7→ 1− J1(2x)
2x Imaginary p. x = kR 7→ H1(2x)

x
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An open question : perfectly matched impedance for the Euler-Bernoulli beam

Matrix-valued impedances as diffusive PDOs ?

As an example, in order to solve the impedance matching
problem for the Euler–Bernoulli beam, an impedance matrix of
the form

Z =

[
a ∂+α

t 1
1 b ∂−α

t

]
is found in the time domain, with α = 1

2 .
A necessary and sufficient condition for the positivity of this
operator is :

ab >
1

(cos απ)2 .

Open question : is there any dissipative diffusive realization of
the transfer matrix Ẑ(s), which is positive in the sense ∀s ∈ C+

0 ,

Ẑ(s) + Ẑ(s)
H ≥ 0, i.e. a positive symmetric real-valued matrix ?
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Y. LYUBICH AND V. PHÓNG, Asymptotic stability of linear
differential equations on Banach spaces, Studia
Mathematica, 88 (1988), pp. 37–42.

O. J. STAFFANS, Well-posedness and stabilizability of a
viscoelastic equation in energy space, Trans. Amer. Math.
Soc., 345 (1994), pp. 527–575.

D. MATIGNON, Stability properties for generalized fractional
differential systems, ESAIM : Proc., 5 (1998), pp. 145–158.

H. ZWART, Transfer functions for infinite-dimensional
systems, Systems Control Lett., 52 (2004), pp. 247–255.



Outline Motivation BIBO-stability of the Lokshin model Asymptotic stability of the Webster-Lokshin model Extensions Bibliography

Some more references
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