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System with Long range interactions

We consider classical Hamiltonian systems of interacting particles

H =

N
∑

i=1

p2i
2

+
1

2

∑

i 6=j

V (qi − qj), (1)

with a two body interaction potential

V (r) ∼
1

rα
, α < d , (2)

where d is the dimension of space.
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Examples

• Gravitation/Coulomb

• Astronomy/astrophysics
• Plasma physics
• Wave particle interactions

• Fluid mechanics

• System of point vortices
• Stockeslets

• Mean Field/Toy models

• HMF
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Statistical and dynamical properties

Statistical properties

• Usually these systems are not extensive

• Size dependent renormalization of the coupling constant

• Systems are not additive

• Inequivalence between statistical ensembles is possible
• Negative specific heat in the microcanonical ensemble
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Statistical and dynamical properties

Dynamical properties

• After a violent relaxation, systems sets in a long lived
quasi-stationary state

• Short time dynamics well described by the Vlasov equation
• Slow relaxation towards equilibrium
• Life of QSS scales with system size

• QSS states obtained through statistical physics using the
Lynden-Bell formalism

• Limits t → ∞ and N → ∞ do not commute
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The HMF model

The Hamiltonian of the HMF model is

H =

N
∑

i=1

p2i
2

+
1

2N

∑

i 6=j

cos(qi − qj). (3)

General properties

• α = 0 < d = 1

• Coupling constant renormalized 1/N : extensive

• System is not additive

• But equivalence between statistical ensembles
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The HMF model

The Hamiltonian of the HMF model is

H =
N
∑

i=1

p2i
2

+
1

2N

∑

i 6=j

cos(qi − qj). (3)

Statistical properties

• The magnetization is used as an order parameter

M =
1

N

(

∑

cos qi ,
∑

sin qi

)

= M (cosϕ, sinϕ) . (4)



Motivations Systems With long range interactions The HMF model The α-HMF model Conclusion

The HMF model

The Hamiltonian of the HMF model is

H =
N
∑

i=1

p2i
2

+
1

2N

∑

i 6=j

cos(qi − qj). (3)

Statistical properties

• The density of energy U becomes

U =
E

N
=

T

2
−

M2

2
. (5)

• A second order phase transition exists at Uc = 3/4 and
Tc = 1/2.
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Out of equilibrium features

Out of equilibrium dynamics are computed using an initial
water-bag:
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This initial condition is then specified by M0 = sin(q0)/q0, and
U = p20/6 + (1−M2

0 )/2.
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Waterbag Dynamics

Mono-cluster
Click Here

Bi-cluster
Click Here
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Poincaré“sections”
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Poincaré“sections”

Mono-cluster
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Out of equilibrium phase transition
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A system of pendulum

The equation of motion are

{

ṗi = −M sin (qi − ϕ)
q̇i = pi

, (6)

Reminding us of a system of decoupled pendulum

H =
N
∑

i=1

p2i
2

+m(1− cos qi ) , (7)
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Stationnary solutions

One pendulum

• H = p2

2
+m(1− cos q) ,

• Compute an invariant ergodic measure

ρi (I , θ) =
1

2π
δ(I − Ii )

• for the collection of pendulum

ρE =

N
∏

i=1

ρi , (8)
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Stationnary solutions

One particle PDF

We obtain the one particle PDF

f (I , θ) =
g(I )

2π
,⇒ f̃ (p, q) (9)

Stationary solution of the Vlasov equation of the pendulum system
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Stationnary solutions

HMF Stationary State

• Recall
{

ṗi = −M sin (qi − ϕ)
q̇i = pi

, (10)

• For the pendulum

M̄ = 〈M〉 =

(

1

2π

∫

g(I ) cos q(I , θ) dIdθ , 0

)

. (11)

• And if 〈M〉 = m . Individual dynamics of pendulum and HMF
systems are the same
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ṗi = −M sin (qi − ϕ)
q̇i = pi

, (10)

• For the pendulum

M̄ = 〈M〉 =

(

1

2π

∫

g(I ) cos q(I , θ) dIdθ , 0

)

. (11)

• And if 〈M〉 = m . Individual dynamics of pendulum and HMF
systems are the same



Motivations Systems With long range interactions The HMF model The α-HMF model Conclusion

Stationnary solutions

HMF Stationary State

• Recall
{
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Example

Click Here
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Lyapunov exponent

The one-particle distribution function at thermal equilibrium is

ρ(p, q) =

√

2π

β

1

I0(βM)
exp

(

−β

(

p2

2
−M cos q

))

, (12)

with M solution of the implicit equation

M =
I1(βM)

I0(βM)
(13)
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Lyapunov exponent

We compute the Lyapunov exponent for finite N with close to
equilibrium intital conditions:
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The α-HMF model

The Hamiltonian of the HMF model is

H =
N
∑

i=1





p2i
2

+
1

2Ñ

N
∑

j 6=i

1− cos (qi − qj)

‖i − j‖α



 , (14)

with

Ñ =

(

2

N

)α

+ 2

N/2−1
∑

i=1

1

iα
≈

2

1− α
(N/2)1−α. (15)

General properties

• Long range for 0 ≤ α < d = 1

• For α = 0 the HMF model is recovered

• Equilibrium statistical properties are identical to HMF
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What about Stationary states

The equation of motion for p are

ṗi = − sin(qi )Ci + cos(qi )Si = Mi sin(qi − ϕi ) . (16)

with

Ci =
1

Ñ

∑

j 6=i

cos qj
‖i − j‖α

(17)

Si =
1

Ñ

∑

j 6=i

sin qj
‖i − j‖α

, (18)

and Mi =
√

C 2
i + S2

i .
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What about Stationary states

Continuum limit

• We perform the N → ∞,

• Using, x = i/N and y = j/N we obtain

Ci ≈
1− α

2α

∑

j 6=i

1

N

cos qj

‖ i
N
− j

N
‖α

Ci ≈ C (x) =
1− α

2α

∫ 1/2

−1/2

cos (q(y))

‖x − y‖α
dy ,

and the same is true for Si .
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N
‖α

Ci ≈ C (x) =
1− α

2α

∫ 1/2

−1/2

cos (q(y))

‖x − y‖α
dy ,

and the same is true for Si .



Motivations Systems With long range interactions The HMF model The α-HMF model Conclusion

What about Stationary states

Continuum limit

• We perform the N → ∞

• And obtain thus scalar field equations

∂q

∂t
= p(x , t)

∂p

∂t
=

µ

2α
Γ(µ) (− sin(q)Iµ (cos q) + cos(q)Iµ (sin q)) ,

with µ = 1− α and Iµ(f ) represents a fractional integral
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What about Stationary states

Fractional condition
So contrary to the mean field situation (α = 0), the spatial
organization q(x) becomes relevant for α > 0. We need
C (x) = Cte = 〈C 〉 = M

Dα cos q =
dα cos q

dxα
= 0 . (19)

HMF Stationary State

• Solution of the fractional equation imply:

• Spatial complex organization

• Locally scale free distribution of values of q(x)
• coarse grained value of cos q is constant.

• If we take the local distributions to be one stationary
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• Spatial complex organization

• Locally scale free distribution of values of q(x)
• coarse grained value of cos q is constant.

• If we take the local distributions to be one stationary
distribution of HMF:

• We insure that the dynamics will not affect the distribution
• We obtain stationary states of the α-HMF model.
• Regularity in time implies strong complexity in space
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What about Stationary states
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What about Stationary states
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Poincaré“sections”

Multi-cluster

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3



Motivations Systems With long range interactions The HMF model The α-HMF model Conclusion

Poincaré“sections”

Structure of QSS
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Lifetime

Magnetization vs time
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Lifetime

Lifetime of QSS
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Conclusion

• The explored systems tend towards organizing themselves to
have regular individual motion

• Stationary states correspond to integrable microscopic motion

• Regularity in time is preserved in non-mean field system at the
price of spatial complexity

• Features of low-dimensional systems can be expected

• Fractional calculus appears to be useful

• Does it still hold for higher embeded dimensions and more
realistic physical systems ?
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