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2
Threefold Introduction to Fractional Derivatives

R. Hilfer

2.1
Historical Introduction to Fractional Derivatives

2.1.1
Leibniz

Already at the beginning of calculus one of its founding fathers, namely G.W.
Leibniz, investigated fractional derivatives [72, 73]. Differentiation, denoted
as dα (α ∈ N), obeys Leibniz’ product rule

dα( f g) = 1 dα f d0g+
α

1
dα−1 f d1g +

α(α − 1)
1 · 2 dα−2 f d2g + ... (2.1)

for integer α, and Leibniz was intrigued by the analogy with the binomial
theorem

pα( f + g) = 1 pα f p0g+
α

1
pα−1 f p1g+

α(α − 1)
1 · 2 pα−2 f p2g+ ... (2.2)

where he uses the notation pα f instead of f α to emphasize the formal opera-
tional analogy.

Moving from integer to noninteger powers α ∈ R Leibniz suggests that
"on peut exprimer par une serie infinie une grandeur comme" dαh (with h = f g).
As his first step he tests the idea of such a generalized differential quantity
dαh against the rules of his calculus. In his calculus the differential relation
dh = hdx implies dx = dh/h and dh/dx = h. One has, therefore, also d2h =
hdx2 and generally dαh = hdxα. Regarding dαh = hdxα with noninteger α as
a fractional differential relation subject to the rules of his calculus, however,



18 2 Threefold Introduction to Fractional Derivatives

leads to a paradox. Explicitly, he finds (for α = 1/2)

dαh

dxα
=

dαh

(dh/h)α
6= h (2.3)

where dx = dh/h was used. Many decades had to pass before Leibniz’ para-
dox was fully resolved.

2.1.2
Euler

Derivatives of noninteger (fractional) order motivated Euler to introduce the
Gamma function [25]. Euler knew that he needed to generalize (or interpo-
late, as he calls it) the product 1 · 2 · ... · n = n! to noninteger values of n, and
he proposed an integral

n

∏
k=1

k = n! =

1∫

0

(− log x)n dx (2.4)

for this purpose. In §27-29 of [25] he immediately applies this formula to par-
tially resolve Leibniz’ paradox, and in §28 he gives the basic fractional deriva-
tive (reproduced here in modern notation with Γ(n + 1) = n!)

dαxβ

dxα
=

Γ(β + 1)
Γ(β − α + 1)

xβ−α (2.5)

valid for integer and for noninteger α, β.

2.1.3
Paradoxa and Problems

Generalizing eq. (2.5) to all functions that can be expanded into a power series
might seem a natural step, but this "natural" definition of fractional deriva-
tives does not really resolve Leibniz’ paradox. Leibniz had implicitly assumed
the rule

dαeλx

dxα
= λαeλx (2.6)

by demanding dαh = hdxα for integer α. One might therefore take eq. (2.6)
instead of eq. (2.5) as an equally "natural" starting point (this was later done
by Liouville in [76, p.3,eq.(1)]), and define fractional derivatives as

dα f

dxα
= ∑

k

ck λα
k eλkx (2.7)
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for functions representable as exponential series f (x) ∼ ∑k ck exp(λkx). Re-
garding the integral (a Laplace integral)

x−β =
1

Γ(β)

∞∫

0

e−yxyβ−1dy (2.8)

as a sum of exponentials, Liouville [76, p. 7] then applied eq. (2.6) inside the
integral to find

dαx−β

dxα
=

1
Γ(β)

∞∫

0

e−yx(−y)αyβ−1dy =
(−1)αΓ(β + α)

Γ(β) xβ+α
(2.9)

where the last equality follows by substituting yx = z in the integral. If this
equation is formally generalized to −β, disregarding existence of the integral,
one finds

dαxβ

dxα
=

(−1)αΓ(−β + α)

Γ(−β)
xβ−α (2.10)

a formula similar to, but different from eq. (2.5). Although eq. (2.10) agrees
with eq. (2.5) for integer α it differs for noninteger α. More precisely, if α = 1/2
and β = −1/2, then

Γ(3/2)
Γ(0)

x−1 = 0 6= i
x
√

π
=

(−1)1/2Γ(1)
Γ(1/2)

x−1 (2.11)

revealing again an inconsistency between eq. (2.5) and eq. (2.10) (resp. (2.9)).

Another way to see this inconsistency is to expand the exponential function
into a power series, and to apply Euler’s rule, eq. (2.5), to it. One finds (with
obvious notation)
(

dα

dxα

)

(2.5)
exp(x) =

(
dα

dxα

)

(2.5)

∞

∑
k=0

xk

k!
=

∞

∑
k=0

xk−α

Γ(k− α + 1)

6=
(

dα

dxα

)

(2.6)
exp(x) = exp(x) (2.12)

and this shows that Euler’s rule (2.5) is inconsistent with the Leibniz/Liouville
rule (2.6). Similarly, Liouville found inconsistencies [75, p.95/96] when calcu-
lating the fractional derivative of exp(λx) + exp(−λx) based on the definition
(2.7).

A resolution of Leibniz’ paradox emerges when eq. (2.5) and (2.6) are com-
pared for α = −1, and interpreted as integrals. Such an interpretation was
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already suggested by Leibniz himself [73]. More specifically, one has

d−1ex

dx−1 = ex =

x∫

−∞

etdt 6=
x∫

0

etdt = ex − 1 =
d−1

dx−1

∞

∑
k=0

xk

k!
(2.13)

showing that Euler’s fractional derivatives on the right hand side differs from
Liouville’s and Leibniz’ idea on the left. Similarly, eq. (2.5) corresponds to

d−1xβ

dx−1 =
xβ+1

β + 1
=

x∫

0

yβdy. (2.14)

On the other hand, eq. (2.9) corresponds to

d−1x−β

dx−1 =
x1−β

1− β
= −

∞∫

x

y−βdy =

x∫

∞

y−βdy. (2.15)

This shows that Euler’s and Liouville’s definitions differ with respect to their
limits of integration.

2.1.4
Liouville

It has already been mentioned that Liouville defined fractional derivatives
using eq. (2.7) (see [76, p.3,eq.(1)]) as

dα f

dxα
= ∑

k

ck λα
k eλkx (2.7)

for functions representable as a sum of exponentials

f (x) ∼ ∑
k

ck exp(λkx). (2.16)

Liouville seems not to have recognized the necessity of limits of integration.
From his definition (2.7) he derives numerous integral and series representa-
tions. In particular, he finds the fractional integral of order α > 0 as

∫ α
f (x)dxα =

1
(−1)αΓ(α)

∞∫

0

f (x + y)yα−1dy (2.17)

(see formula [A] on page 8 of [76, p.8]). Liouville then gives formula [B] for
fractional differentiation on page 10 of [76] as

dα f

dxα
=

1
(−1)n−αΓ(n− α)

∞∫

0

dn f (x + y)

dxn
yn−α−1dy (2.18)
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where n − 1 < α < n. Liouville restricts the discussion to functions repre-
sented by exponential series with λk > 0 so that f (−∞) = 0. Liouville also
expands the coefficients λα

k in (2.7) into binomial series

λα
k = lim

h→0

1
hα

(1− e−hλk)α, λk > 0 (2.19a)

= (−1)α lim
h→0

1
hα

(1− ehλk)α, λk < 0 (2.19b)

and inserts the expansion into his defintion (2.7) to arrive at formulae that
contain the representation of integer order derivatives as limits of difference
quotients (see [75, p.106ff]). The results may be written as

dα f

dxα
= lim

h→0

{
1
hα

∞

∑
m=0

[
(−1)m

(
α

m

)
f (x−mh)

]}
(2.20a)

= (−1)α lim
h→0

{
1
hα

∞

∑
m=0

[
(−1)m

(
α

m

)
f (x + mh)

]}
(2.20b)

where the binomial coefficient (α
m) is Γ(α − 1)Γ(m− 1)/Γ(α + m − 1). Later,

this idea was taken up by Grünwald [34], who defined fractional derivatives
as limits of generalized difference quotients.

2.1.5
Fourier

Fourier [29] suggested to define fractional derivatives by generalizing the for-
mula for trigonometric functions,

dα

dxα
cos(x) = cos

(
x +

απ

2

)
, (2.21)

from α ∈ N to α ∈ R. Again, this is not unique because the generalization

dα

dxα
cos(x) = (−1)α cos

(
x− απ

2

)
(2.22)

is also possible.

2.1.6
Grünwald

Grünwald wanted to free the definition of fractional derivatives from a spe-
cial form of the function. He emphasized that fractional derivatives are inte-
groderivatives, and established for the first time general fractional derivative
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operators. His calculus is based on limits of difference quotients. He studies
the difference quotients [34, p.444]

F[u, x, α, h] f =
n

∑
k=0

(−1)k
(

α

k

)
f (x− kh)

hα
(2.23)

with n = (x− u)/h and calls

Dα[ f (x)]x=x
x=u = lim

h→0
F[u, x, α, h] f (2.24)

the α-th differential quotient taken over the straight line from u to x [34, p.452]. The
title of his work emphasizes the need to introduce limits of integration into the
concept of differentiation. His ideas were soon elaborated upon by Letnikov
(see [99])and applied to differential equations by Most [89].

2.1.7
Riemann

Riemann, like Grünwald, attempts to define fractional differentiation for gen-
eral classes of functions. Riemann defines the n-th differential quotient of a
function f (x) as the coeffcient of hn in the expansion of f (x + h) into inte-
ger powers of h [96, p.354]. He then generalizes this definition to noninteger
powers, and demands that

f (x + h) =
n=∞

∑
n=−∞

cn+α(∂n+α
x f )(x) hn+α (2.25)

holds for n ∈ N, α ∈ R. The factor cn+α is determined such that ∂β(∂γ f ) =
∂β+γ f holds, and found to be 1/Γ(n + α + 1). Riemann then derives the inte-
gral representation [96, p.363] for negative α

∂α f =
1

Γ(−α)

x∫

k

(x− t)−α−1 f (t)dt+
∞

∑
n=1

Kn
x−α−n

Γ(−n− α + 1)
(2.26)

where k,Kn are finite constants. He then extends the result to nonnegative
α by writing "für einen Werth von α aber, der ≥ 0 ist, bezeichnet ∂α f dasjenige,

was aus ∂α−m f (wo m > α) durch m-malige Differentiation nach x hervorgeht,..."

[96, p.341]. The combination of Liouville’s and Grünwald’s pioneering work
with this idea has become the definition of the Riemann-Liouville fractional
derivatives (see Section 2.2.2.1 below).
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2.2
Mathematical Introduction to Fractional Derivatives

The brief historical introduction has shown that fractional derivatives may be
defined in numerous ways. A natural and frequently used approach starts
from repeated integration and extends it to fractional integrals. Fractional
derivatives are then defined either by continuation of fractional integrals to
negative order (following Leibniz’ ideas [73]), or by integer order derivatives
of fractional integrals (as suggested by Riemann [96]).

2.2.1
Fractional Integrals

2.2.1.1 Iterated Integrals

Consider a locally integrable1 real valued function f : G → R whose domain
of definition G = [a, b] ⊆ R is an interval with −∞ ≤ a < b ≤ ∞. Integrating
n times gives the fundamental formula

(Ina+ f )(x) =

x∫

a

x1∫

a

...

xn−1∫

a

f (xn) dxn...dx2dx1

=
1

(n− 1)!

x∫

a

(x− y)n−1 f (y) dy (2.27)

where a < x < b and n ∈ N. This formula may be proved by induction. It
reduces n-fold integration to a single convolution integral (Faltung). The sub-
script a+ indicates that the integration has a as its lower limit. An analogous
formula holds with lower limit x and upper limit a. In that case the subscript
a− will be used.

1) A function f : G → R is called locally integrable if it is integrable on
all compact subsets K ⊂ G (see eq.(B.9)).
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2.2.1.2 Riemann-Liouville Fractional Integrals

Equation (2.27) for n-fold integration can be generalized to noninteger values
of n using the relation (n− 1)! = ∏

n−1
k=1 k = Γ(n) where

Γ(z) =

1∫

0

(− log x)z−1 dx (2.28)

is Euler’s Γ-function defined for all z ∈ C.

Definition 2.1 Let −∞ ≤ a < x < b ≤ ∞. The Riemann-Liouville fractional inte-

gral of order α > 0 with lower limit a is defined for locally integrable functions
f : [a, b] → R as

(Iαa+ f )(x) =
1

Γ(α)

x∫

a

(x− y)α−1 f (y) dy (2.29a)

for x > a. The Riemann-Liouville fractional integral of order α > 0 with upper limit

b is defined as

(Iαb− f )(x) =
1

Γ(α)

b∫

x

(y− x)α−1 f (y) dy (2.29b)

for x < b. For α = 0

(I0a+ f )(x) = (I0b− f )(x) = f (x) (2.30)

completes the definition. The definition may be generalized to α ∈ C with
Re α > 0.

Formula (2.29a) appears in [96, p. 363] with a > −∞ and in [76, p. 8] with
a = −∞. The notation is not standardized. Leibniz, Lagrange and Liouville
used the symbol

∫ α [22,73,76], Grünwald wrote
∫ α

[...dxα]x=x
x=a , while Riemann

used ∂−α
x [96] and Most wrote d−α

a /dx−α [89]. The notation in (2.29) is that
of [52, 54, 98, 99]. Modern authors also use fα [37], Iα [97], a I

α
x [94], Iα

x [23],
aD

−α
x [85, 91, 102], or d−α/d(x− a)−α [92] instead of Iαa+

2.

The fractional integral operators Iαa+, I
α
b− are commonly called Riemann-

Liouville fractional integrals [94, 98, 99] although sometimes this name is re-
served for the case a = 0 [85]. Their domain of definition is typically chosen

2) Some authors [23, 26, 85, 91, 92, 97] employ the derivative symbol D
also for integrals, resp. I for derivatives, to emphasize the similarity
between fractional integration and differentiation. If this is done, the
choice of Riesz and Feller, namely I, seems superior in the sense that
fractional derivatives, similar to integrals, are nonlocal operators,
while integer derivatives are local operators.
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as D(Iαa+) = L1([a, b]) or D(Iαa+) = L1loc([a, b]) [94, 98, 99]. For the definition of
Lebesgue spaces see the Appendix B. If f ∈ L1([a, b]) then (Iαa+ f ) ∈ L1([a, b])
and (Iαa+ f )(x) is finite for almost all x. If f ∈ Lp([a, b]) with 1 ≤ p ≤ ∞ and
α > 1/p then (Iαa+ f )(x) is finite for all x ∈ [a, b]. Analogous statements hold
for (Iαb− f )(x) [98].

A short table of Riemann-Liouville fractional integrals is given in Appendix
A. For a more extensive list of fractional integrals see [24].

2.2.1.3 Weyl Fractional Integrals

Examples (2.5) and (2.6) or (A.2) and (A.3) show that Definition 2.1 is well
suited for fractional integration of power series, but not for functions defined
by Fourier series. In fact, if f (x) is a periodic function with period 2π, and3

f (x) ∼
∞

∑
k=−∞

cke
ikx (2.31)

then the Riemann-Liouville fractional (Iαa+ f ) will in general not be periodic.
For this reason an alternative definition of fractional integrals was investi-
gated by Weyl [124].

Functions on the unit circle G = R/2πZ correspond to 2π-periodic func-
tions on the real line. Let f (x) be periodic with period 2π and such that the
integral of f over the interval [0, 2π] vanishes, so that c0 = 0 in eq. (2.31). Then
the integral of f is itself a periodic function, and the constant of integration
can be chosen such that the integral over [0, 2π] vanishes again. Repeating
the integration n times one finds using (2.6) and the integral representation
ck = (1/2π)

∫ 2π
0 e−iks f (s)ds of Fourier coefficients

∞

∑
k=−∞

ck
eikx

(ik)n
=

1
2π

2π∫

0

f (y)
∞

∑
k=−∞
k 6=0

eik(x−y)

(ik)n
dy (2.32)

with c0 = 0. Recall the convolution formula [132, p.36]

( f ∗ g)(t) =
1
2π

2π∫

0

f (t− s)g(s)ds =
∞

∑
k=−∞

fkgke
ikt (2.33)

3) The notation ∼ indicates that the sum does not need to converge,
and, if it converges, does not need to converge to f (x).
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for two periodic functions f (t) ∼ ∑
∞
k=−∞ fkeikt and g(t) ∼ ∑

∞
k=−∞ gkeikt. Us-

ing eq. (2.33) and generalizing (2.32) to noninteger n suggests the following
definition. [94, 99].

Definition 2.2 Let f ∈ Lp(R/2πZ), 1 ≤ p < ∞ be periodic with period 2π

and such that its integral over a period vanishes. The Weyl fractional integral

of order α is defined as

(Iα± f )(x) = (Ψα
± ∗ f )(x) =

1
2π

2π∫

0

Ψα
±(x− y) f (y)dy (2.34)

where

Ψα
±(x) =

∞

∑
k=−∞
k 6=0

eikx

(±ik)α
(2.35)

for 0 < α < 1.

It can be shown that the series for Ψα
±(x) converges and that the Weyl defi-

nition coincides with the Riemann-Liouville definition [133]

(Iα+ f )(x) =
1

Γ(α)

x∫

−∞

(x− y)α−1 f (y) dy (2.36a)

respectively

(Iα− f )(x) =
1

Γ(α)

∞∫

x

(y− x)α−1 f (y) dy (2.36b)

for 2π periodic functions whose integral over a period vanishes. This is eq.
(2.29) with a = −∞ resp. b = ∞. For this reason the Riemann-Liouville
fractional integrals with limits ±∞, Iα+ f = Iα(−∞)+ f and Iα− f = Iα∞− f , are
often calledWeyl fractional integrals [24, 85, 94, 99].

The Weyl fractional integral may be rewritten as a convolution

(Iα± f )(x) = (Kα
± ∗ f )(x) (2.37)

where the convolution product for functions on R is defined as4

(K ∗ f )(x) :=

∞∫

−∞

K(x− y) f (y)dy (2.38)

4) If K, f ∈ L1(R) then (K ∗ f )(t) exists for almost all t ∈ R and
f ∈ L1(R). If K ∈ Lp(R), f ∈ Lq(R) with 1 < p, q < ∞ and
1/p+ 1/q = 1 then K ∗ f ∈ C0(R), the space of continuous functions
vanishing at infinity.
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and the convolution kernels are defined as

Kα
±(x) := Θ(±x)

(±x)α−1

Γ(α)
(2.39)

for α > 0. Here

Θ(x) =





1 , x > 0

0 , x ≤ 0
(2.40)

is the Heaviside unit step function, and xα = exp α log x with the convention
that log x is real for x > 0. For α = 0 the kernel

K0
+(x) = K0

−(x) = δ(x) (2.41)

is the Dirac δ-function defined in (C.2) in Appendix C. Note that Kα
± ∈ L1loc(R)

for α > 0.

2.2.1.4 Riesz Fractional Integrals

Riemann-Liouville andWeyl fractional integrals have upper or lower limits of
integration, and are sometimes called left-sided resp. right-sided integrals. A
more symmetric definition was advanced in [97].

Definition 2.3 Let f ∈ L1loc(R) be locally integrable. The Riesz fractional integral
or Riesz potential of order α > 0 is defined as the linear combination [99]

(Iα f )(x) =
(Iα+ f )(x) + (Iα− f )(x)

2 cos(απ/2)
=

1
2Γ(α) cos(απ/2)

∞∫

−∞

f (y)

|x− y|1−α
dy (2.42)

of right- and left-sided Weyl fractional integrals. The conjugate Riesz potential
is defined by

(Ĩα f )(x) =
(Iα+ f )(x)− (Iα− f )(x)

2 sin(απ/2)
=

1
2Γ(α) sin(απ/2)

∞∫

−∞

sgn(x− y) f (y)

|x− y|1−α
dy

(2.43)

Of course, α 6= 2k + 1, k ∈ Z in (2.42) and α 6= 2k, k ∈ Z in (2.43). The
definition is again completed with

(I0 f )(x) = (Ĩ0 f )(x) = f (x) (2.44)

for α = 0.



28 2 Threefold Introduction to Fractional Derivatives

Riesz fractional integration may be written as a convolution

(Iα f )(x) = (Kα ∗ f )(x) (2.45a)

(Ĩα f )(x) = (K̃α ∗ f )(x) (2.45b)

with the (one-dimensional) Riesz kernels

Kα(x) =
Kα

+(x) + Kα
−(x)

2 cos(απ/2)
=

|x|α−1

2 cos(απ/2)Γ(α)
(2.46)

for α 6= 2k + 1, k ∈ Z, and

K̃α(x) =
Kα

+(x)− Kα
−(x)

2 sin(απ/2)
=

|x|α−1 sgn(x)

2 sin(απ/2)Γ(α)
(2.47)

for α 6= 2k, k ∈ Z. Subsequently, Feller introduced the generalized Riesz-Feller
kernels [26]

Kα,β(x) =
|x|α−1 sin [α (π/2 + β sgn x)]

2 sin(απ/2)Γ(α)
(2.48)

with parameter β ∈ R. The corresponding generalized Riesz-Feller fractional

integral of order α and type β is defined as

(Iα,β f )(x) = (Kα,β ∗ f )(x). (2.49)

This formula interpolates continuously from the Weyl integral Iα− = Iα,−π/2

for β = −π/2 through the Riesz integral Iα = Iα,0 for β = 0 to the Weyl
integral Iα+ = Iα,π/2 for β = π/2. Due to their symmetry Riesz-Feller fractional
integrals are readily generalized to higher dimensions.

2.2.1.5 Fractional Integrals of Distributions

Fractional integration can be extended to distributions using the convolution
formula (2.37) above. Distributions are generalized functions [31, 105]. They
are defined as linear functionals on a space X of conveniently chosen “test
functions”. For every locally integrable function f ∈ L1loc(R) there exists a
distribution F f : X → C defined by

F f (ϕ) = 〈 f , ϕ〉 =

∞∫

−∞

f (x)ϕ(x) dx (2.50)

where ϕ ∈ X is test function from a suitable space X of test functions. By
abuse of notation one often writes f for the associated distribution F f . Distri-
butions that correspond to functions via (2.50) are called regular distributions.
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Examples for regular distributions are the convolution kernels Kα
± ∈ L1loc(R)

defined in (2.39). They are locally integrable functions on R when α > 0. Dis-
tributions that are not regular are sometimes called singular. An important
example for a singular distribution is the Dirac δ-function. It is defined as
δ : X → C

∫
δ(x)ϕ(x)dx = ϕ(0) (2.51)

for every test function ϕ ∈ X. The test function space X is usually chosen as
a subspace of C∞(R), the space of infinitely differentiable functions. A brief
introduction to distributions is given in Appendix C.

In order to generalize (2.37) to distributions onemust define the convolution
of two distributions. To do so one multiplies eq. (2.38) on both sides with a
smooth test function ϕ ∈ C∞

c (R) of compact support. Integrating gives

〈K ∗ f , ϕ〉 =

∞∫

−∞

∞∫

−∞

K(x− y) f (y)ϕ(x)dydx

=

∞∫

−∞

∞∫

−∞

K(x) f (y)ϕ(x+ y)dydx

= 〈K(x), 〈 f (y), ϕ(x+ y)〉〉. (2.52)

where the notation 〈 f (y), ϕ(x+ y)〉 means that the functional F f is applied to
the function ϕ(x + ·) for fixed x. Explicitly, for fixed x

F f (ϕx) = 〈 f (y), ϕx(y)〉 = 〈 f (y), ϕ(x+ y)〉 =

∞∫

−∞

f (y)ϕ(x + y)dx (2.53)

where ϕx(·) = ϕ(x + ·). Equation (2.52) can be used as a definition for the
convolution of distributions provided that the right hand side has meaning.
This is not always the case as the counterexample K = f = 1 shows. In
general the convolution product is not associative (see eq. (2.113)). However,
associative and commutative convolution algebras exist [21]. Equation (2.52)
is always meaningful when suppK or supp f is compact [63]. Another case is
when K and f have support in R+. This will be assumed in the following.

Definition 2.4 Let f be a distribution f ∈ C∞
0 (R)′ with supp f ⊂ R+. Then its

fractional integral is the distribution Iα0+ f defined as

〈Iα0+ f , ϕ〉 = 〈Iα+ f , ϕ〉 = 〈Kα
+ ∗ f , ϕ〉 (2.54)

for Re α > 0. It has support in R+.



30 2 Threefold Introduction to Fractional Derivatives

If f ∈ C∞
0 (R)′ with supp f ⊂ R+ then also Iα0+ f ∈ C∞

0 (R)′ with
supp Iα0+ f ⊂ R+.

2.2.1.6 Integral Transforms

The Fourier transformation is defined as

F { f} (k) =

∞∫

−∞

e−ikx f (x) dx (2.55)

for functions f ∈ L1(R). Then

F {Iα± f} (k) = (±ik)−αF { f} (k) (2.56)

holds for 0 < α < 1 by virtue of the convolution theorem. The equation cannot
be extended directly to α ≥ 1 because the Fourier integral on the left hand side
may not exist. Consider e.g. α = 1 and f ∈ C∞

c (R). Then (I1+ f )(x) →const

as x → ∞ and F
{
I1+ f

}
does not exist [94]. Equation (2.56) can be extended

to all α with Re α > 0 for functions in the so called Lizorkin space [99, p.148]
defined as the space of functions f ∈ S(R) such that (Dm F { f})(0) = 0 for
all m ∈ N0.

For the Riesz potentials one has

F {Iα f} (k) = |k|−αF { f} (k) (2.57a)

F
{
Ĩα f
}

(k) = (−i sgn k)|k|−αF { f} (k) (2.57b)

for functions in Lizorkin space.

The Laplace transform is defined as

L { f} (u) =

∞∫

0

e−ux f (x) dx (2.58)

for locally integrable functions f : R+ → C. Now

L
{
Iα0+ f

}
(u) = u−αL { f} (u) (2.59)

by the convolution theorem for Laplace transforms. The Laplace transform of
Iα0− f leads to a more complicated operator.
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2.2.1.7 Fractional Integration by Parts

If f (x) ∈ Lp([a, b]), g ∈ Lq([a, b]) with 1/p+ 1/q ≤ 1+ α, p, q ≥ 1 and p 6= 1,
q 6= 1 for 1/p + 1/q = 1+ α then the formula

b∫

a

f (x)(Iαa+ g)(x)dx =

b∫

a

g(x)(Iαb− f )(x)dx (2.60)

holds. The formula is known as fractional integration by parts [99]. For f (x) ∈
Lp(R), g ∈ Lq(R) with p > 1, q > 1 and 1/p + 1/q = 1 + α the analogous
formula

∞∫

−∞

f (x)(Iα+ g)(x)dx =

∞∫

−∞

g(x)(Iα− f )(x)dx (2.61)

holds for Weyl fractional integrals.

These formulae provide a second method of generalizing fractional integra-
tion to distributions. Equation (2.60) may be read as

〈Iαa+ f , ϕ〉 = 〈 f , Iαb− ϕ〉 (2.62)

for a distribution f and a test function ϕ. It shows that right- and left-sided
fractional integrals are adjoint operators. The formula may be viewed as a
definition of the fractional integral Iαa+ f of a distribution provided that the
operator Iαb− maps the test function space into itself.

2.2.1.8 Hardy-Littlewood Theorem

The mapping properties of convolutions can be studied with the help of
Youngs inequality. Let p, q, r obey 1 ≤ p, q, r ≤ ∞ and 1/p + 1/q = 1 + 1/r.
If K ∈ Lp(R) and f ∈ Lq(R) then K ∗ f ∈ Lr(R) and Youngs inequal-
ity ‖K ∗ f‖r ≤ ‖K‖p ‖ f‖q holds. It follows that ‖K ∗ f‖q ≤ C‖ f‖p if
1 ≤ p ≤ q ≤ ∞ and K ∈ Lr(R) with 1/r = 1 + (1/q) − (1/p). The Hardy-
Littlewood theorem states that these estimates remain valid for Kα

± although
these kernels do not belong to any Lp(R)-space [37, 38]. The theorem was
generalized to higher dimensions by Sobolev in 1938, and is also known as
the Hardy-Littlewood-Sobolev inequality (see [37, 38, 63, 113]).

Theorem 2.5 Let 0 < α < 1, 1 < p < 1/α, −∞ ≤ a < b ≤ ∞. Then Iαa+, I
α
b−

are bounded linear operators from Lp([a, b]) to Lq([a, b]) with 1/q = (1/p)− α,i.e.

there exists a constant C(p, q) independent of f such that ‖ Iαa+ f‖q ≤ C‖ f‖p.
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2.2.1.9 Additivity

The basic composition law for fractional integrals follows from

(Kα
+ ∗ Kβ

+)(x) =

x∫

0

Kα
+(x− y)K

β
+(y) dy =

x∫

0

(x− y)α−1

Γ(α)

yβ−1

Γ(β)
dy

=
xα−1

Γ(α)

xβ−1

Γ(β)

1∫

0

(1− z)α−1zβ−1xdz

=
xα+β−1

Γ(α + β)
= K

α+β
+ (x) (2.63)

where Euler’s Beta-function

Γ(α)Γ(β)

Γ(α + β)
=

1∫

0

(1− z)α−1zβ−1xdz = B(α, β) (2.64)

was used. This implies the semigroup law for exponents

Iαa+ Iβ
a+ = Iα+β

a+ , (2.65)

also called additivity law. It holds for Riemann-Liouville, Weyl and Riesz-
Feller fractional integrals of functions.

2.2.2
Fractional Derivatives

2.2.2.1 Riemann-Liouville Fractional Derivatives

Riemann [96, p.341] suggested to define fractional derivatives as integer order
derivatives of fractional integrals.

Definition 2.6 Let −∞ ≤ a < x < b ≤ ∞. The Riemann-Liouville fractional

derivative of order 0 < α < 1 with lower limit a (resp. upper limit b) is defined for
functions such that f ∈ L1([a, b]) and f ∗ K1−α ∈ W1,1([a, b]) as

(Dα
a± f )(x) = ± d

dx
(I1−α

a± f )(x) (2.66)

and (D0
a± f )(x) = f (x) for α = 0. For α > 1 the definition is extended for

functions f ∈ L1([a, b]) with f ∗ Kn−α ∈ Wn,1([a, b]) as

(Dα
a± f )(x) = (±1)n

dn

dxn
(In−α

a± f )(x) (2.67)
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where5 n = [Re α] + 1 is smallest integer larger than α.

Here Wk,p(G) = { f ∈ Lp(G) : Dk f ∈ Lp(G)} denotes a Sobolev space
defined in (B.17). For k = p = 1 the spaceW1,1([a, b]) = AC0([a, b]) coincides
with the space of absolutely continuous functions.

The notation for fractional derivatives is not standardized6. Leibniz and
Euler used dα [25, 72, 73] Riemann wrote ∂α

x [96], Liouville preferred dα/dxα

[76], Grünwald used {dα f/dxα}x=x
x=a or Dα[ f ]x=x

x=a [34], Marchaud wrote D(α)
a ,

and Hardy-Littlewood used an index f α [37]. The notation in (2.67) follows
[52, 54, 98, 99]. Modern authors also use I−α [97], I−α

x [23], aD
α
x [85, 94, 102],

dα/dxα [102, 129], dα/d(x− a)α [92] instead of Dα
a+.

Let f (x) be absolutely continuous on the finite interval [a, b]. Then, its
derivative f ′ exists almost everywhere on [a, b] with f ′ ∈ L1([a, b]), and the
function f can be written as

f (x) =

x∫

a

f ′(y)dy+ f (a) = (I1a+ f ′)(x) + f (a) (2.68)

Substituting this into Iαa+ f gives

(Iαa+ f )(x) = (I1a+ Iαa+ f ′)(x) +
f (a)

Γ(α + 1)
(x− a)α (2.69)

where commutativity of I1a+ and Iαa+ was used. It follows that

(D Iαa+ f )(x)− (Iαa+ D f )(x) =
f (a)

Γ(α)
(x− a)α−1 (2.70)

for 0 < α < 1. Above, the notations

(D f )(x) =
d f (x)

dx
= f ′(x) (2.71)

were used for the first order derivative.

This observation suggests to introduce a modified Riemann-Liouville frac-
tional derivative through

( D̃
α
a+ f )(x) := In−α

a+ f (n)(x) =
1

Γ(n− α)

x∫

a

f (n)(y)

(x− y)α−n+1dy (2.72)

5) [x] is the largest integer smaller than x.
6) see footnote 2
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where n = [Re α] + 1. Note, that f must be at least n-times differentiable. For-
mula (2.72) is due to Liouville [76, p.10] (see eq. (2.18) above), but nowadays
sometimes named after Caputo [17].

The relation between (2.72) and (2.67) is given by

Theorem 2.7 For f ∈ ACn−1([a, b]) with n = [Re α] + 1 the Riemann-Liouville

fractional derivative (Dα
a+ f )(x) exists almost everywhere for Re α ≥ 0. It can be

written as

(Dα
a+ f )(x) = ( D̃

α
a+ f )(x) +

n−1

∑
k=0

(x− a)k−α

Γ(k− α + 1)
f (k)(a) (2.73)

in terms of the Liouville(-Caputo) derivative defined in (2.72).

The Riemann-Liouville fractional derivative is the left inverse of Riemann-
Liouville fractional integrals. More specifically, [99, p.44]

Theorem 2.8 Let f ∈ L1([a, b]). Then

Dα
a+ Iαa+ f (x) = f (x) (2.74)

holds for all α with Re α ≥ 0.

For the right inverses of fractional integrals one finds

Theorem 2.9 Let f ∈ L1([a, b]) and Re α > 0. If in addition In−α
a+ f ∈ ACn([a, b])

where n = [Re α] + 1 then

Iαa+ Dα
a+ f (x) = f (x)−

n−1

∑
k=0

(x− a)α−k−1

Γ(α − k)

(
Dn−k−1 In−α

a+ f
)

(a) (2.75)

holds. For 0 < Re α < 1 this becomes

Iαa+ Dα
a+ f (x) = f (x)− (I1−α

a+ f )(a)

Γ(α)
(x− a)α−1 (2.76)

The last theorem implies that for f ∈ L1([a, b]) and Re α > 0 with n =
[Re α] + 1 the equality

Iαa+ Dα
a+ f (x) = f (x) (2.77)

holds only if

In−α
a+ f ∈ ACn([a, b]) (2.78a)
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and

(
Dk In−α

a+ f
)

(a) = 0 (2.78b)

for all k = 0, 1, 2, ..., n− 1. Note that the existence of g(x) = Dα
a+ f (x) in eq.

(2.77) does not imply that f (x) can be written as (Iαa+ g)(x) for some integrable
function g [99]. This holds only if both conditions (2.78) are satisfied. As an
example where one of them fails, consider the function f (x) = (x− a)α−1 for
0 < α < 1. Then Dα

a+(x− a)α−1 = 0 exists. NowD0 I1−α
a+ (x− a)α−1 6= 0 so that

(2.78b) fails. There does not exist an integrable g such that Iαa+ g = (x− a)α−1.
In fact, g corresponds to the δ-distribution δ(x− a).

2.2.2.2 General Types of Fractional Derivatives

Riemann-Liouville fractional derivatives have been generalized in [52, p.433]
to fractional derivatives of different types.

Definition 2.10 The generalized Riemann-Liouville fractional derivative of order 0 <

α < 1 and type 0 ≤ β ≤ 1 with lower (resp. upper) limit a is defined as

(Dα,β
a± f )(x) =

(
± Iβ(1−α)

a±
d
dx

(
I(1−β)(1−α)
a± f

))
(x) (2.79)

for functions such that the expression on the right hand side exists.

The type β of a fractional derivative allows to interpolate continuously from
Dα

a± = Dα,0
a± to D̃

α
a± = Dα,1

a±. A relation between fractional derivatives of the
same order but different types was given in [52, p.434].

2.2.2.3 Marchaud-Hadamard Fractional Derivatives

Marchaud’s approach [78] is based on Hadamards finite parts of divergent
integrals [36]. The strategy is to define fractional derivatives as analytic con-
tinuation of fractional integrals to negative orders. [see [99, p.225]]

Definition 2.11 Let −∞ < a < b < ∞ and 0 < α < 1. The Marchaud fractional

derivative of order α with lower limit a is defined as

(Mα
a+ f )(x) =

f (x)

Γ(1− α)(x− a)α
+

α

Γ(1− α)

x∫

a

f (x)− f (y)

(x− y)α+1 dy (2.80)
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and the Marchaud fractional derivative of order α with upper limit b is defined as

(Mα
b− f )(x) =

f (x)

Γ(1− α)(b− x)α
+

α

Γ(1− α)

b∫

x

f (x) − f (y)

(x− y)α+1 dy (2.81)

For a = −∞ (resp. b = ∞) the definition is

(Mα
± f )(x) =

α

Γ(1− α)

∞∫

0

f (x) − f (x∓ y)

yα+1 dy (2.82)

The definition is completed with M0 f = f for all variants.

The idea of Marchaud’s method is to extend the Riemann-Liouville integral
from α > 0 to α < 0, and to define

(I−α
+ f )(x) =

1
Γ(−α)

∞∫

0

y−α−1 f (x− y) dy (2.83)

where α > 0. However, this is not possible because the integral in (2.83) di-
verges. The idea is to subtract the divergent part of the integral,

∫ ∞

ε
y−α−1 f (x)dy =

f (x)

αεα
(2.84)

obtained by setting f (x − y) ≈ f (x) for y ≈ 0. Subtracting (2.83) from (2.84)
for 0 < α < 1 suggests the definition

(Mα
+ f )(x) = lim

ε→0+

1
Γ(−α)

∞∫

ε

f (x) − f (x− y)

yα+1 dy (2.85)

Formal integration by parts leads to (I1−α
+ f ′)(x), showing that this definition

contains the Riemann-Liouville definition.

The definition may be extended to α > 1 in two ways. The first consists
in applying (2.85) to the n-th derivative dn f/dxn for n < α < n + 1. The
second possibility is to regard f (x − y) − f (x) as a first order difference, and
to generalize to n-th order differences. The n-th order difference is

(∆n
y f )(x) = (1 −Ty)

n f (x) =
n

∑
k=0

(−1)k
(
n

k

)
f (x− ky) (2.86)

where (1 f )(x) = f (x) is the identity operator and

(Th f )(x) = f (x− h) (2.87)
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is the translation operator. The Marchaud fractional derivative can then be
extended to 0 < α < n through [94, 98]

(Mα
+ f )(x) = lim

ε→0+

1
Cα,n

∞∫

ε

∆n
y f (x)

yα+1 dy (2.88)

where

Cα,n =

∞∫

0

(1− e−y)n

yα+1 dy (2.89)

where the limit may be taken in the sense of pointwise or norm convergence.

The Marchaud derivatives Mα
± are defined for a wider class of functions

than Weyl derivatives Dα
±. As an example consider the function f (x) =const.

Let f be such that there exists a function g ∈ L1([a, b]) with f = Iαa+ g.
Then the Riemann-Liouville derivative and the Marchaud derivative coincide
almost everywhere, i.e. (Mα

a+ f )(x) = (Dα
a+ f )(x) for almost all x [99, p.228].

2.2.2.4 Weyl Fractional Derivatives

There are two kinds of Weyl fractional derivatives for periodic functions. The
Weyl-Liouville fractional derivative is defined as [99, p.351], [94]

(Dα
± f )(x) = ± d

dx
(I1−α
± f )(x) (2.90)

for 0 < α < 1 where the Weyl integral ± Iα± f was defined in (2.34). The
Weyl-Marchaud fractional derivative is defined as [99, p.352], [94]

(Wα
± f )(x) =

1
2π

2π∫

0

[ f (x− y) − f (x)] (D1 Ψ1−α
± )(y)dy (2.91)

for 0 < α < 1 where Ψ±(x) is defined in eq. (2.35). The Weyl derivatives
are defined for periodic functions of with zero mean in Cβ(R/2πZ) where
β > α. In this space (Dα

± f )(x) = (Wα
± f )(x), i.e. the Weyl-Liouville and

Weyl-Marchaud form coincide [99]. As for fractional integrals, it can be shown
that the Weyl-Liouville derivative (0 < α < 1)

(Dα
+ f )(x) =

1
Γ(1− α)

x∫

−∞

f (y)

(x− y)α
dy (2.92)
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coincides with the Riemann-Liouville derivative with lower limit −∞. In ad-
dition one has the equivalence Dα

+ f = Wα
+ f with the Marchaud-Hadamard

fractional derivative in a suitable sense [99, p.357].

2.2.2.5 Riesz Fractional Derivatives

To define the Riesz fractional derivative as integer derivatives of Riesz poten-
tials consider the Fourier transforms

F
{
DI1−α f

}
(k) = (ik)|k|α−1F { f} (k) = (i sgn k)|k|αF { f} (k) (2.93)

F
{
D Ĩ1−α f

}
(k) = (ik)(−i sgn k)|k|α−1F { f} (k) = |k|αF { f} (k) (2.94)

for 0 < α < 1. Comparing this to eq. (2.57) suggests to consider

d
dx

(Ĩ1−α f )(x) = lim
h→0

1
h

[
(Ĩ1−α f )(x + h) − (Ĩ1−α f )(x)

]
(2.95)

as a candidate for the Riesz fractional derivative.

Following [94] the strong Riesz fractional derivative of order α Rα f of a function
f ∈ Lp(R), 1 ≤ p < ∞, is defined through the limit

lim
h→0

∥∥∥∥
1
h
( f ∗ K1−α

h ) − Rα f

∥∥∥∥
p

= 0 (2.96)

whenever it exists. The convolution kernel defined as

K1−α
h =

1
2Γ(1− α) sin(απ/2)

[
sgn(x + h)

|x + h|α − sgn x

|x|α
]

(2.97)

is obtained from eq. (2.95). Indeed, this definition is equivalent to eq. (2.94).
A function f ∈ Lp(R) where 1 ≤ p ≤ 2 has a strong Riesz derivative of order
α if and only if there exsists a function g ∈ Lp(R) such that |k|αF { f} (k) =
F {g} (k). Then Rα f = g.

2.2.2.6 Grünwald-Letnikov Fractional Derivatives

The basic idea of the Grünwald approach is to generalize finite difference quo-
tients to noninteger order, and then take the limit to obtain a differential quo-
tient. The first order derivative is the limit

d
dx

f (x) = (D f )(x) = lim
h→0

f (x)− f (x− h)

h
= lim

h→0

[1 −T(h)]

h
f (x) (2.98)
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of a difference quotient. In the last equality (1 f )(x) = f (x) is the identity
operator, and

[T(h) f ](x) = f (x− h) (2.99)

is the translation operator. Repeated application of T gives

[T(h)n f ](x) = f (x− nh) (2.100)

where n ∈ N. The second order derivative can then be written as

d2

dx2
f (x) = (D2 f )(x) = lim

h→0

f (x) − 2 f (x− h) + f (x− 2h)
h2

= lim
h→0

{
[1 −T(h)]

h

}2

f (x), (2.101)

and the n-th derivative

dn

dxn
f (x) = (Dn f )(x) = lim

h→0

1
hn

n

∑
k=0

(−1)k
(
n

k

)
f (x− kh)

= lim
h→0

{
[1 −T(h)]

h

}n

f (x) (2.102)

which exhibits the similarity with the binomial formula. The generalization to
noninteger n gives rise to fractional difference quotients defined through

(∆α
h f )(x) =

∞

∑
k=0

(−1)k
(

α

k

)
f (x− kh) (2.103)

for α > 0. These are generally divergent for α < 0. For example, if f (x) = 1,
then

N

∑
k=0

(−1)k
(

α

k

)
=

1
Γ(1− α)

Γ(N + 1− α)

Γ(N + 1)
(2.104)

diverges as N → ∞ if α < 0. Fractional difference quotients were studied
in [68]. Note that fractional differences obey [99]

(∆α
h(∆

β
h f ))(x) = (∆

α+β
h f )(x) (2.105)

Definition 2.12 The Grünwald-Letnikov fractional derivative of order α > 0 is de-
fined as the limit

(Gα
± f )(x) = lim

h→0+

1
hα

(∆α
±h f )(x) (2.106)

of fractional difference quotients whenever the limit exists. The Grünwald
Letnikov fractional derivative is called pointwise or strong depending on
whether the limit is taken pointwise or in the norm of a suitable Banach space.
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For a definition of Banach spaces and their norms see e.g. [128].

The Grünwald-Letnikov fractional derivative has been studied for periodic
functions in Lp(R/2πZ) with 1 ≤ p < ∞ in [94, 99]. It has the following
properties.

Theorem 2.13 Let f ∈ Lp(R/2πZ), 1 ≤ p < ∞ and α > 0. Then the following

statements are equivalent:
1. Gα

+ f ∈ Lp(R/2πZ)

2. There exists a function g ∈ Lp(R/2πZ) such that (ik)αF { f (x)} (k) =
F {g(x)} (k) where k ∈ Z.

3. There exists a function g ∈ Lp(R/2πZ) such that f (x) − F { f (x)} (0) =
(Iα+ g)(x) holds for almost all x.

Theorem 2.14 Let f ∈ Lp(R/2πZ), 1 ≤ p < ∞ and α, β > 0. Then:
1. Gα

+ f ∈ Lp(R/2πZ) implies Gβ
+ f ∈ Lp(R/2πZ) for every 0 < β < α.

2. Gα
+ Gβ

+ f = Gα+β
+ f

3. Gα
+(Iα+ f ) = f (x)−F { f} (0)

2.2.2.7 Fractional Derivatives of Distributions

The basic idea for defining fractional differentiation of distributions is to ex-
tend the definition of fractional integration (2.54) to negative α. However, for
Re α < 0 the distribution Kα

+ becomes singular because xα−1 is not locally
integrable in this case. The extension of Kα

+ to Re α < 0 requires regulariza-
tion [31, 63, 128]. It turns out that the regularization exists and is essentially
unique as long as (−α) /∈ N0.

Definition 2.15 Let f be a distribution f ∈ C∞
0 (R)′ with supp f ⊂ R+. Then

the fractional derivative of order α with lower limit 0 is the distribution Dα
0+ f

defined as

〈Dα
0+ f , ϕ〉 = 〈Dα

+ f , ϕ〉 = 〈K−α
+ ∗ f , ϕ〉 (2.107)

where α ∈ C and

Kα
+(x) =





Θ(x)
xα−1

Γ(α)
, Re α > 0

dN

dxN

[
Θ(x)

xα+N−1

Γ(α + N)

]
, Re α + N > 0,N ∈ N

(2.108)

is the kernel distribution. For α = 0 one finds K0
+(x) = (d/dx)Θ(x) = δ(x)

and D0
0+ = 1 as the identity operator. For the α = −k, k ∈ N one finds

K−k
+ (x) = δ(k)(x) (2.109)
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where δ(k) is the k-th derivative of the δ distribution.

The kernel distribution in (2.108) is

K−α
+ (x) =

d
dx

[
Θ(x)

x−α

Γ(1− α)

]
=

d
dx

K1−α
+ (x) (2.110)

for 0 < α < 1. Its regularized action is

〈
K−α

+ (x), ϕ(x)
〉

=

〈
d
dx

K1−α
+ (x), ϕ(x)

〉
= −

〈
K1−α

+ (x), ϕ(x)′
〉

(2.111a)

= − 1
Γ(1− α)

lim
ε→0

∞∫

ε

x−α ϕ(x)′dx (2.111b)

= − lim
ε→0





ϕ(x) + C

Γ(α)xα

∣∣∣∣
∞

ε

−
∞∫

ε

ϕ(x) + C

Γ(−α)x1+α
dx



 (2.111c)

=

∞∫

0

ϕ(x)− ϕ(0)
Γ(−α)x1+α

dx (2.111d)

where ϕ(∞) < ∞ was assumed in the last step and the arbitrary constant
was chosen as C = −ϕ(0). This choice regularizes the divergent first term in
(2.111c). If this rule is used for the distributional convolution

(K−α
+ ∗ f )(x) =

1
Γ(−α)

∞∫

0

f (x)− f (x− y)

yα+1 dy = (Mα
+ f )(x) (2.112)

then the Marchaud-Hadamard form is recovered with 0 < α < 1.

It is now possible to show that the convolution of distributions is in general
not associative. A counterexample is

(1 ∗ δ′) ∗ Θ = 1′ ∗ Θ = 0 ∗ Θ = 0 6= 1 = 1 ∗ δ = 1 ∗ Θ′ = 1 ∗ (δ′ ∗ Θ) (2.113)

where Θ is the Heaviside step function.

Dα
0+ f has support in R+. The distributions in f ∈ C∞

0 (R)′ with supp f ⊂
R+ form a convolution algebra [21] and one finds [31, 99]

Theorem 2.16 If f ∈ C∞
0 (R)′ with supp f ⊂ R+ then also Iα0+ f ∈ C∞

0 (R)′ with
Iα0+ supp f ⊂ R+. Moreover, for all α, β ∈ C

Dα
0+ Dβ

0+ f = Dα+β
0+ f (2.114)

with Dα
0+ f = I−α

0+ f for Re α < 0. For each f ∈ C∞
0 (R)′ with supp f ⊂ R+ there

exists a unique distribution g ∈ C∞
0 (R)′ with supp g ⊂ R+ such that f = Iα0+ g.
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Note that

Dα
0+ f = Dα

0+(1 f ) = (K−α
+ ∗ K0

+) ∗ f = (Dα
0+ δ) ∗ f = δ(α) ∗ f (2.115)

for all α ∈ C. Also, the differentiation rule

Dα
0+ K

β
+ = K

β−α
+ (2.116)

holds for all α, β ∈ C. It contains

D K
β
+ = K

β−1
+ (2.117)

for all β ∈ C as a special case.

2.2.2.8 Fractional Derivatives at Their Lower Limit

All fractional derivatives defined above are nonlocal operators. A local frac-
tional derivative operator was introduced in [40, 41, 52].

Definition 2.17 For −∞ < a < ∞ the Riemann-Liouville fractional derivative of

order 0 < α < 1 at the lower limit a is defined by

dα f

dx

∣∣∣∣
x=a

= f (α)(a) = lim
x→a±

(Dα
a± f )(x) (2.118)

whenever the two limits exist and are equal. If f (α)(a) exists the function f is
called fractionally differentiable at the limit a.

These operators are useful for the analysis of singularities. They were
applied in [40–42, 44, 52] to the analysis of singularities in the theory of criti-
cal phenomena and to the generalization of Ehrenfests classification of phase
transitions. There is a close relationship to the theory of regularly varying
functions [107] as evidenced by the following result [52].

Theorem 2.18 Let the function f : [0,∞[→ R be monotonously increasing with

f (x) ≥ 0 and f (0) = 0, and such that (Dα,λ
0+ f )(x) with 0 < α < 1 and 0 ≤ λ ≤ 1

is also monotonously increasing on a neighbourhood [0, δ] for small δ > 0. Let 0 ≤
β < λ(1− α) + α, let C ≥ 0 be a constant and Λ(x) a slowly varying function for

x → 0. Then

lim
x→0

f (x)

xβΛ(x)
= C (2.119)

holds if and only if

lim
x→0

(Dα,λ
0+ f )(x)

xβ−αΛ(x)
= C

Γ(β + 1)
Γ(β − α + 1)

(2.120)

holds.
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A function f is called slowly varying at infinity if limx→∞ f (bx)/ f (x) = 1
for all b > 0. A function f (x) is called slowly varying at a ∈ R if f (1/(x− a))
is slowly varying at infinity.

2.2.2.9 Fractional Powers of Operators

The spectral decomposition of selfadjoint operators is a familiar mathematical
tool from quantum mechanics [116]. Let A denote a selfadjoint operator with
domain D(A) and spectral family Eλ on a Hilbert space X with scalar product
(., .). Then

(Au, v) =
∫

σ(A)

λd(Eλu, v) (2.121)

holds for all u, v ∈ D(A). Here σ(A) is the spectrum of A. It is then straight-
forward to define the fractional power Aαu by

(Aαu, u) =
∫

σ(A)

λαd(Eλu, u) (2.122)

on the domain

D(Aα) = {u ∈ X :
∫

σ(A)

λαd(Eλu, u) < ∞}. (2.123)

Similarly, for any measurable function g : σ(A) → C the operator g(A) is
defined with an integrand g(λ) in eq. (2.122). This yields an operator calculus
that allows to perform calculations with functions instead of operators.

Fractional powers of the Laplacian as the generator of the diffusion semi-
group were introduced by Bochner [13] and Feller [26] based on Riesz’ frac-
tional potentials. The fractional diffusion equation

∂ f

∂t
= −(−∆)α/2 f (2.124)

was related by Feller to the Levy stable laws [74] using one dimensional frac-
tional integrals I−α,β of order −α and type β [26]7. For α = 2 eq. (2.124)
reduces to the diffusion equation. This type of fractional diffusion will be re-
ferred to as fractional diffusion of Bochner-Levy type (see Section 2.3.4 for more
discussion). Later, these ideas were extended to fractional powers of closed8

7) Fellers motivation to introduce the type β was this relation.
8) An operator A : B → B on a Banach space B is called closed if the set

of pairs (x, Ax) with x ∈ D(A) is closed in B× B.
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semigroup generators [4, 5, 69, 70]. If (−A) is the infinitesimal generator of a
semigroup T(t) (see Section 2.3.3.2 for definitions of T(t) and A) on a Banach
space B then its fractional power is defined as

(−A)α f = lim
ε→0+

1
−Γ(−α)

∞∫

ε

t−α−1[1 −T(t)] fdt (2.125)

for every f ∈ B for which the limit exists in the norm of B [93, 120, 121, 123].
This aproach is clearly inspired by the Marchaud form (2.82). Alternatively,
one may use the Grünwald approach to define fractional powers of semigroup
generators [99, 122].

2.2.2.10 Pseudodifferential Operators

The calculus of pseudodifferential operators represents another generalization
of the operator calculus in Hilbert spaces. It has its roots in Hadamard’s ideas
[36], Riesz potentials [97], Feller’s suggestion [26] and Calderon-Zygmund
singular integrals [16]. Later it was generalized and became a tool for treating
elliptic partial differential operators with nonconstant coefficients.

Definition 2.19 A (Kohn-Nirenberg) pseudodifferential operator of order α ∈ R

σ(x, D) : S(Rd) → S(Rd) is defined as

σ(x, D) f (x) =
1

(2π)d

∫

Rd

eixkσ(x, k)F { f} (k)dk (2.126)

and the function σ(x, k) is called its symbol. The symbol is in the Kohn-
Nirenberg symbol class Sα if it is in C∞(R2d), and there exists a compact set
K ⊂ Rd such that supp σ ⊂ K×Rd, and for any pair of multiindices β, γ there
is a constant Cβ,γ such that

Dβ
k D

γ
x σ(x, k) ≤ Cβ,γ(1+ |k|)α−|β| (2.127)

The Hörmander symbol class Sα
ρ,δ is obtained by replacing the exponent α −

|β| on the right hand side with α − ρ|β|+ δ|γ| where 0 ≤ ρ, δ ≤ 1.

Pseudodifferential operators provide a unified approach to differential and
integral or convolution operators that are “nearly” translation invariant. They
have a close relation with Weyl quantization in physics [28, 116]. However,
they will not be discussed further because the traditional symbol classes do
not contain the usual fractional derivative operators. Fractional Riesz deriva-
tives are not pseudodifferential operators in the sense above. Their symbols
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do not fall into any of the standard Kohn-Nirenberg or Hörmander symbol
classes due to lack of differentiability at the origin.

2.2.3
Eigenfunctions

The eigenfunctions of Riemann-Liouville fractional derivatives are defined as
the solutions of the fractional differential equation

(Dα
0+ f )(x) = λ f (x) (2.128)

where λ is the eigenvalue. They are readily identifed using eq. (A.6) as

f (x) = x1−αEα,α(λxα) (2.129)

where

Eα,β =
∞

∑
k=0

xk

Γ(αk + β)
(2.130)

is the generalizedMittag-Leffler function [125,126]. More generally the eigen-
value equation for fractional derivatives of order α and type β reads

(Dα,β
0+ f )(x) = λ f (x), (2.131)

and it is solved by [54, eq.124]

f (x) = x(1−β)(1−α)Eα,α+β(1−α)(λxα) (2.132)

where the case β = 0 corresponds to (2.128). A second important special case
is the equation

(Dα,1
0+ f )(x) = λ f (x), (2.133)

with Dα,1
0+ = D̃

α
0+. In this case the eigenfunction

f (x) = Eα(λxα) (2.134)

where Eα(x) = Eα,1(x) is the Mittag-Leffler function [86]. The Mittag-Leffler
function plays a central role in fractional calculus. It has only recently been
calculated numerically in the full complex plane [62, 108]. Figure 2.1 and 2.2
illustrate E0.8,0.9(z) for a rectangular region in the complex plane (see [108]).
The solid line in Figure 2.1 is the line Re E0.8,0.9(z) = 0, in Figure 2.2 it is
ImE0.8,0.9(z) = 0.
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Fig. 2.1 Truncated real part of the generalized Mittag-Leffler function
−3 ≤ ReE0.8,0.9(z) ≤ 3 for z ∈ C with −7 ≤ Re z ≤ 5 and −10 ≤
Im z ≤ 10. The solid line is defined by ReE0.8,0.9(z) = 0.

Fig. 2.2 Same as Fig. 2.1 for the imaginary part of E0.8,0.9(z). The
solid line is ImE0.8,0.9(z) = 0.

Note, that some authors are avoiding the operator Dα,1
0+ in fractional differ-

ential equations (see e.g. [7,82,84,101,111,112] or chapters in this volume). In
their notation the eigenvalue equation (2.133) becomes (c.f. [112, eq.(22)])

d
dx

f (x) = λD1−α
0+ f (x) (2.135)

containing two derivative operators instead of one.
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2.3
Physical Introduction to Fractional Derivatives

2.3.1
Basic Questions

An introduction to fractional derivatives would be incomplete without an in-
troduction to applications. In the past fractional calculus has been used pre-
dominantly as a convenient calculational tool [26, 76, 89]. A well known ex-
ample is Riesz’ interpolation method for solving the wave equation [20]. In
recent times, however, fractional differential equations appear as “generaliza-
tions” of more or less fundamental equations of physics [3,12,18,23,43,46,52,
54–56,58,60,90,91,102,104,119,129]. The idea is that physical phenomena can
be described by fractional differential equations. This practice raises at least
two fundamental questions:

1. Are mathematical models with fractional derivatives consistent with the
fundamental laws and fundamental symmetries of nature ?

2. How can the fractional order α of differentiation be observed or how
does a fractional derivative emerge from concrete models ?

Both questions will be addressed here. The answer to the first question is
provided by the theory of fractional time evolutions [43,47], the answer to the
second question by anomalous subdiffusion [46, 60].

2.3.2
Fractional Space

Fractional derivatives are nonlocal operators. Nevertheless, numerous au-
thors have proposed fractional differential equations involving fractional spa-
tial derivatives. Particularly popular are fractional powers of the Laplace op-
erator due to the well knownwork of Riesz, Feller and Bochner [13,27,97]. The
nonlocality of fractional spatial derivatives raises serious (largely) unresolved
physical problems.

As an illustration of the problemwith spatial fractional derivatives consider
the one dimensional potential equation for functions f ∈ C2(R)

d2

dx2
f (x) = 0, x ∈ G (2.136)
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on the open interval G =]a, b[ with boundary conditions f (a) = 0, f (b) = 0
with a < b. A solution of this boundary value problem is f (x) = 0 with
x ∈ G. This trivial solution remains unchanged as long as the boundary values
f (a) = f (b) = 0 remain unperturbed. All functions f ∈ C2(R) that vanish on
[a, b] are solutions of the boundary value problem. In particular, the boundary
specification

f (x) = 0, for x ∈ R \ G (2.137)

and the perturbed boundary specification

f (x) = g(x), for x ∈ R \ G (2.138)

with g ≥ 0 and supp g ∩ [a, b] = ∅ have the same trivial solution f = 0 in G.
The reason is that d2/dx2 is a local operator.

Consider now a fractional generalization of (2.136) that arises for example
as the stationary limit of (Bochner-Levy) fractional diffusion equations with a
fractional Laplace operator [13]. Such a onedimensional fractional Laplace
equation reads

Rα f (x) = 0 (2.139)

where Rα is a Riesz fractional derivative of order 0 < α < 1. For the boundary
specification (2.137) it has the same trivial solution f (x) = 0 for all x ∈ G.
But this solution no longer applies for the perturbed boundary specification
(2.138). In fact, assuming (2.138) for x ∈ R \ G and f (x) = 0 for x ∈ G now
yields (Rα f )(x) 6= 0 for all x ∈ G. The exterior R \ G of the domain G cannot
be isolated from the interior of G using classical boundary conditions. The
reason is that Rα is a nonlocal operator.

Locality in space is a basic and firmly established principle of physics (see
e.g. [35, 115]). Of course, one could argue that relativistic effects are negli-
gible, and that fractional spatial derivatives might arise as an approximate
phenomenological model describing an underlying physical reality that obeys
spatial locality. However, spatial fractional derivatives imply not only action
at a distance. As seen above, they imply also that the exterior domain cannot
be decoupled from the interior by conventional walls or boundary conditions.
This has far reaching consequences for theory and experiment. In theory it
invalidates all arguments based on surface to volume ratios becoming negli-
gible in the large volume limit. This includes many concepts and results in
thermodynamics and statistical physics that depend on the lower dimension-
ality of the boundary. Experimentally it becomes difficult to isolate a system
from its environment. Fractional diffusion would never come to rest inside a
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vessel with thin rigid walls unless the equilibrium concentration prevails also
outside the vessel. A fractionally viscous fluid at rest inside a container with
thin rigid walls would have to start to move when the same fluid starts flow-
ing outside the vessel. It seems therefore difficult to reconcile nonlocality in
space with theory and experiment.

2.3.3
Fractional Time

2.3.3.1 Basic Questions

Nonlocality in time, unlike space, does not violate basic principles of physics,
as long as it respects causality [43,47–49,54]. In fact, causal nonlocality in time
is a common nonequilibrium phenomenon known as history dependence,
hysteresis and memory.

Theoretical physics postulates time translation invariance as a fundamental
symmetry of nature. As a consequence energy conservation is fundamental,
and the infinitesimal generator of time translations is a first order time deriva-
tive. Replacing integer order time derivativeswith fractional time derivatives
raises at least three basic questions:1. What replaces time translations as the physical time evolution ?

2. Is the nonlocality of fractional time derivatives consistent with the laws
of nature ?

3. Is the asymmetry of fractional time derivatives consistent with the laws
of nature ?These questions as well as ergodicity breaking, stationarity, long time limits

and temporal coarse grainigwere discussed first within ergodic theory [47–49]
and later from a general perspective in [54].

The third question requires special remarks because irreversibility is a long-
standing and controversial subject [71]. The problem of irreversibility may be
formulated briefly in two ways.

Definition 2.20 (The normal irreversibility problem) Assume that time is reversible.
Explain how and why time irreversible equations arise in physics.

Definition 2.21 (The reversed irreversibility problem) Assume that time is irre-
versible. Explain how and why time reversible equations arise in physics.

While the normal problem has occupied physicists and mathematicians for
more than a century, the reversed problem was apparently first formulated
in [59]. Surprisingly, the reversed irreversibility problem has a clear and quan-
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titiative solution within the theory of fractional time. The solution is based
on the simple postulate that every time evolution of a physical system is ir-
reversible. It is not possible to repeat an experiment in the past [59]. This
empiricial fact seems to reflect a fundamental law of nature that rivals the law
of energy conservation.

The mathematical concepts corresponding to irreversible time evolutions
are operator semigroups and abstract Cauchy problems [15, 93]. The follow-
ing brief introduction to fractional time evolutions (sections 2.3.3.2–2.3.3.8) is
in large parts identical to the brief exposition in [59]. For more details see [54].

2.3.3.2 Time Evolution

Aphysical time evolution {T(∆t) : 0 ≤ ∆t < ∞} is defined as a one-parameter
family (with time parameter ∆t) of bounded linear time evolution operators
T(∆t) on a Banach space B. The parameter ∆t represents time durations. The
one-parameter family fulfills the conditions

[T(∆t1)T(∆t2) f ](t0) = [T(∆t1 + ∆t2) f ](t0) (2.140)

[T(0) f ](t0) = f (t0) (2.141)

for all ∆t1,∆t2 ≥ 0, t0 ∈ R and f ∈ B. The elements f ∈ B represent time
dependent physical observables, i.e. functions on the time axis R. Note that
the argument ∆t ≥ 0 of T(∆t) has the meaning of a time duration, while t ∈ R

in f (t)means a time instant. Equations (2.140) and (2.141) define a semigroup.
The inverse elements T(−∆t) are absent. This reflects the fundamental differ-
ence between past and future.

The linear operator A defined as

A f = s-lim
∆t→0+

T(∆t) f − f

∆t
(2.142)

with domain

D(A) =

{
f ∈ B : s-lim

∆t→0+

T(∆t) f − f

∆t
exists

}
(2.143)

is called the infinitesimal generator of the semigroup. Here s-lim f = g is the
strong limit and means lim ‖ f − g‖ = 0 in the norm of B as usual.
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2.3.3.3 Continuity

Physical time evolution is continuous. This requirement is represented math-
ematically by the assumption that

s-lim
∆t→0

T(∆t) f = f (2.144)

holds for all f ∈ B, where s-lim is again the strong limit. Semigroups
of operators satisfying this condition are called strongly continuous or C0-
semigroups [15, 93]. Strong continuity is weaker than uniform continuity and
has become recognized as an important continuity concept that covers most
applications [2].

2.3.3.4 Homogeneity

Homogeneity of time means two different requirements: Firstly, it requires
that observations are independent of a particular instant or position in
time. Secondly, it requires arbitrary divisibility of time durations and self-
consistency for the transition between time scales.

Independence of physical processes from their position on the time axis re-
quires that physical experiments are reproducible if they are ceteris paribus

shifted in time. The first requirement, that the start of an experiment can be
shifted, is expressed mathematically as the requirement of invariance under
time translations. As a consequence one demands commutativity of the time
evolution with time translations in the form

[T(τ)T(∆t) f ](t0) = [T(∆t)T(τ) f ](t0) = [T(∆t) f ](t0 − τ) (2.145)

for all ∆t ≥ 0 und t0, τ ∈ R. Here the translation operator T(t) is defined by

T(τ) f (t0) = f (t0 − τ). (2.146)

Note that τ ∈ R is a time shift, not a duration. It can also be negative. Physical
experiments in the past have the same outcome as in the present or in the
future. Outcomes of past experiments can be studied in the present with the
help of documents (e.g. a video recording), irrespective of the fact that the
experiment cannot be repeated in the past.

The second requirement of homogeneity is homogeneous divisibility. The
semigroup property (2.140) implies that for ∆t > 0

T(∆t)...T(∆t) = [T(∆t)]n = T(n∆t) (2.147)
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holds. Homogeneous divisibility of a physical time evolution requires that
there exist rescaling factors Dn for ∆t such that with ∆t = ∆t/Dn the limit

lim
n→∞

T(n∆t/Dn) = T(∆t) (2.148)

exists und defines a time evolution T(∆t). The limit n → ∞ corresponds to
two simultaneous limits n → ∞,∆t → 0, and it corresponds to the passage
from a microscopic time scale ∆t to a macroscopic time scale ∆t.

2.3.3.5 Causality

Causality of the physical time evolution requires that the values of the image
function g(t) = (T(∆t) f )(t) depend only upon values f (s) of the original
function with time instants s < t.

2.3.3.6 Fractional Time Evolution

The requirement (2.145) of homogeneity implies that the operators T(∆t) are
convolution operators [114,128]. Let T be a bounded linear operator on L1(R)
that commutes with time translations, i.e. that fulfills eq. (2.145). Then there
exists a finite Borel measure µ such that

(T f )(s) = (µ ∗ f )(s) =
∫

f (s− x)µ(dx) (2.149)

holds [128], [114, p.26]. Applying this theorem to physical time evolution op-
erators T(∆t) yields a convolution semigroup µ∆t of measures T(∆t) f (t) =
(µ∆t ∗ f )(t)

µ∆t1 ∗ µ∆t2 = µ∆t1+∆t2 (2.150)

with ∆t1,∆t2 ≥ 0. For ∆t = 0 the measure µ0 is the Dirac-measure concen-
trated at 0.

The requirement of causality implies that the support supp µ∆t ⊂ R+ =
[0,∞) of the semigroup is contained in the positive half axis.

The convolution semigroupswith support in the positive half axis [0,∞) can
be characterized completely by Bernstein functions [10]. An arbitrarily often
differentiable function b : (0,∞) → R with continuous extension to [0,∞) is
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called Bernstein function if for all x ∈ (0,∞)

b(x) ≥ 0 (2.151)

(−1)n
dnb(x)

dxn
≤ 0 (2.152)

holds for all n ∈ N. Bernstein functions are positive, monotonously increasing
and concave.

The characterization is given by the following theorem [10, p.68]. There
exists a one-to-one mapping between the convolution semigroups {µt : t ≥ 0}
with support on [0,∞) and the set of Bernstein functions b : (0,∞) → R [10].
This mapping is given by

∫ ∞

0
e−uxµ∆t(dx) = e−∆tb(u) (2.153)

with ∆t > 0 and u > 0.

The requirement of homogeneous divisibility further restricts the set of ad-
missible Bernstein functions. It leaves only those measures µ that can appear
as limits

lim
n→∞,∆t→0

µ∆t ∗ ... ∗ µ∆t︸ ︷︷ ︸
n factors

= lim
n→∞

µn∆t/Dn
= µ

∆t (2.154)

Such limit measures µ exist if and only if b(x) = xα with 0 < α ≤ 1 and
Dn ∼ n1/α holds [11, 32, 54].

The remaining measures define the class of fractional time evolutions
Tα(∆t) that depend only on one parameter, the fractional order α. These
remaining fractional measures have a density and they can be written as
[43, 47–49, 54]

Tα(∆t) f (t0) =

∞∫

0

f (t0 − s)hα

( s

∆t

) ds
∆t

(2.155)

where ∆t ≥ 0 and 0 < α ≤ 1. The density functions hα(x) are the one-
sided stable probability densities [43,47–49,54]. They have a Mellin transform
[45, 103, 131]

M{hα(x)} (s) =

∞∫

0

xs−1hα(x)dx =
1
α

Γ((1− s)/α)

Γ(1− s)
(2.156)
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allowing to identify

hα(x) =
1

αx
H10

11

(
1
x

∣∣∣∣∣
(0, 1)

(0, 1/α)

)
(2.157)

in terms of H-functions [30, 45, 95, 103].

2.3.3.7 Infinitesimal Generator

The infinitesimal generators of the fractional semigroups Tα(∆t)

Aα f (t) = −(Mα
+ f )(t) = − 1

Γ(−α)

∫ ∞

0

f (t− s) − f (t)

sα+1 ds (2.158)

are fractional time derivatives of Marchaud-Hadamard type [51,98]. This fun-
damental and general result provides the basis for generalizing physical equa-
tions of motion by replacing the integer order time derivative with a fractional
time derivative as the generator of time evolution [43, 54].

For α = 1 one finds h1(x) = δ(x − 1) from eq. (2.158), and the frac-
tional semigroup Tα=1(∆t) reduces to the conventional translation semigroup
T1(∆t) f (t0) = f (t0−∆t). The special case α = 1 occurs more frequently in the
limit (2.154) than the cases α < 1 in the sense that it has a larger domain of at-
traction. The fact that the semigroup T1(∆t) can often be extended to a group
on all of R provides an explanation for the seemingly fundamental reversibil-
ity of mechanical laws and equations. This solves the "reversed irreversibility
problem".

2.3.3.8 Remarks

Homogeneous divisibility formalizes the fact that a verbal statement in the
present tense presupposes always a certain time scale for the duration of an
instant. In this sense the present should not be thought of as a point, but as a
short time interval [48, 54, 59].

Fractional time evolutions seem to be related to the subjective human ex-
perience of time. In physics the time duration is measured by comparison
with a periodic reference (clock) process. Contrary to this, the subjective hu-
man experience of time amounts to the comparison with an hour glass, i.e.
with a nonperiodic reference. It seems that a time duration is experienced
as “long” if it is comparable to the time interval that has passed since birth.
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This phenomenon seems to be reflected in fractional stationary states defined
as solutions of the stationarity condition Tα(∆t) f (t) = f (t). Fractional sta-
tionarity requires a generalization of concepts such as “stationarity” or “equi-
librium”. This outlook could be of interest for nonequilibrium and biological
systems [43, 47–49, 54].

Finally, also the special case α → 0 challenges philosophical remarks [59].
In the limit α → 0 the time evolution operator degenerates into the identity.
This could be expressed verbally by saying that for α = 0 “becoming” and
“being” coincide. In this sense the paradoxical limit α → 0 is reminiscent of
the eternity concept known from philosophy.

2.3.4
Identification of α from Models

Consider now the second basic question of Section 2.3.1: How can the frac-
tional order α be observed in experiment or identified from concrete models.
To the best knowledge of this author there exist two examples where this is
possible. Both are related to diffusion processes. There does not seem to
exist an example of a rigorous identification of α from Hamiltonian models,
although it has been suggested that such a relation might exist (see [129]).

2.3.4.1 Bochner-Levy Fractional Diffusion

The term fractional diffusion can refer either to diffusion with a fractional
Laplace operator or to diffusion equations with a fractional time derivative.
Fractional diffusion (or Fokker-Planck) equations with a fractional Laplacian
may be called Bochner-Levy diffusion. The identification of the fractional or-
der α in Bochner-Levy diffusion equations has been known for more than five
decades [13, 14, 26]. For a lucid account see also [27]. The fractional order α

in this case is the index of the underlying stable process [13, 27]. With few ex-
ceptions [77] these developments in the nation of mathematics did, for many
years, not find much attention or application in the nation of physics although
eminent mathematical physicists such as Mark Kac were thoroughly famil-
iar with Bochner-Levy diffusion [65]9. A possible reason might be the unre-
solved problem of locality discussed above. Bochner himself writes “Whether

this (equation) might have physical interpretation, is not known to us” [13, p.370].

9) Also, Herrmann Weyl, who pioneered fractional as well as func-
tional calculus and worked on the foundations of physics, seems not
to have applied fractional derivatives to problems in physics.



56 2 Threefold Introduction to Fractional Derivatives

2.3.4.2 Montroll-Weiss Fractional Diffusion

Diffusion equations with a fractional time derivative will be called Montroll-

Weiss diffusion although fractional time derivatives do not appear in the
original paper [87] and the connection was not discovered until 30 years
later [46, 60]. As shown in Section 2.3.3, the locality problem does not arise.
Montroll-Weiss diffusion is expected to be consistent with all fundamental
laws of physics. The fact that the relation between Montroll-Weiss theory and
fractional time derivatives was first established in [46, 60] seems to be widely
unknown at present, perhaps because this fact is never mentioned in widely
read reviews [82] and popular introductions to the subject [112]10.

There exist several versions of diffusion equations with fractional time
derivatives, and they differ physically or mathematically from each other
[54, 82, 104, 127, 130]. Of interest here will be the fractional diffusion equa-
tion for f : Rd × R+ → R

Dα,1
0+ f (r, t) = C ∆ f (r, t) (2.159)

with a fractional time derivative of order α and type 1. The Laplace operator is
∆ and the fractional diffusion constant is C. The function f (r, t) is assumed to
obey the initial condition f (r, 0+) = f0δ(r). Equation (2.159) was introduced
in integral form in [104], but the connection with [87] was not given.

An alternative to eq. (2.159), introduced in [53, 54], is

Dα,0
0+ f (r, t) = C ∆ f (r, t) (2.160)

with a Riemann-Liouville fractional time derivative Dα
0+ of type 0. This equa-

tion does not describe diffusion of Montroll-Weiss type [53]. It has therefore
been called “inconsistent” in [81, p.3566]. As emphasized in [53] the choice of
Dα

0+ in (2.159) is physically and mathematically consistent, but corresponds
to a modified initial condition, namely I1−α

0+ f (r, 0+) = f0δ(r). Similarly, frac-

tional diffusion equations with time derivative Dα,β
0+ of order α and type β have

been investigated in [54]. For α = 1 they all reduce to the diffusion equation.

Before discussing how α arises from an underlying continuous time random
walk it is of interest to give an overall comparison of ordinary diffusion with
α = 1 and fractional diffusion of the form (2.159) with α 6= 1. This is con-
veniently done using the following table published in [46]. The first column
gives the results for α = 1, the second for 0 < α < 1 and the third for the limit

10) Note that, contrary to [112, p.51], fractional derivatives are never
mentioned in [6].
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α → 0. The first row compares the infinitesimal generators of time evolution
Aα. The second row gives the fundamental solution f (k, u) in Fourier-Laplace
space. The third row gives f (k, t) and the fourth f (r, t). In the fifth and sixth
row the asymptotic behaviour is collected for r2/tα → 0 and r2/tα → ∞.

α = 1 0 < α < 1 α → 0

Aα
d
dt

D̃
α
0+ → 1

f (k, u)
f0

u + Ck2
f0u

α−1

uα + Ck2 → f0
u(1+ Ck2)

f (k, t) f0e
−Ctk2 f0Eα

(
−Ctk2

)
→ f0

1+ Ck2

f (r, t)
f0e−r2/4Ct

(4πCt)−d/2

f0
(r2π)d/2

Hd
α

(
r2

4Ctα

)
f0|r|1−

d
2

√
C(2π)d

K d−2
d

( |r|√
C

)

r2

tα
→ 0 t−d/2 |r|2−d

tα
|r|(2/d)−(d/2)

r2

tα
→ ∞ exp

[
− r2

4Ct

]
exp


−cα

(
r2

4Ctα

) 1
2−α


 exp

(
− |r|√

C

)

In the table Eα,β(x) denotes the generalizedMittag-Leffler function from eq.

(2.130), Kν(x) is the modified Bessel function [1], d > 2, cα = (2− α)αα/(2−α)

and the shorthand

Hd
α (x) = H20

12

(
x

∣∣∣∣∣
(1, α)

(d/2, 1), (1, 1)

)
(2.161)

was used for the H-function H20
12 . For information on H-functions see [30, 54,

79, 95].

The results in the table show that the normal diffusion (α = 1) is slowed
down for 0 < α < 1 and comes to a complete halt for α → 0. For more
discussion of the solution see [46].
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2.3.4.3 Continuous Time Random Walks

The fractional diffusion equation (2.159) can be related rigorously to the mi-
croscopic model of Montroll-Weiss continuous time random walks (CTRW’s)
[64,87] in the same way as ordinary diffusion is related to random walks [27].
The fractional order α can be identified and has a physical meaning related to
waiting times in the Montroll-Weiss model. The relation between fractional
time derivatives and CTRW’s was first exposed in [46, 60]. The relation was
established in two steps. First, it was shown in [60] that Montroll-Weiss con-
tinuous time randomwalks with a Mittag-Leffler waiting time density are rig-
orously equivalent to a fractional master equation. Then, in [46] this under-
lying random walk model was connected to the fractional diffusion equation
(2.159) in the usual asymptotic sense [109] of long times and large distances11.
For additional results see also [50, 53, 54, 57]

The basic integral equation for separable continuous time random walks
describes a random walker in continuous time without correlation between
its spatial and temporal behaviour. It reads [39, 64, 87, 88, 118]

f (r, t) = δr,0Φ(t) +

t∫

0

ψ(t− t′) ∑
r′

λ(r− r′) f (r′, t′)dt′ (2.162)

where f (r, t) denotes the probability density to find the walker at position
r ∈ Rd after time t if it started from r = 0 at time t = 0. The function λ(r) is the
probability for a displacement by r in each step, and ψ(t) gives the probability
density of waiting time intervals between steps. The transition probabilities
obey ∑r λ(r) = 1, and Φ(t) = 1−

∫ t
0 ψ(t′)dt′ is the survival probability at the

initial site.

The fractional master equation introduced in [60] with inital condition
f (r, 0) = δr,0 reads

Dα,1
0+ f (r, t) = ∑

r′
w(r− r′) f (r′, t) (2.163)

with fractional transition ratesw(r) obeying ∑r w(r) = 0. Note, that eq. (2.162)
contains a free function ψ(t) that has no counterpart in eq. (2.163). The rig-
orous relation between eq. (2.162) and eq. (2.163), first established in [60], is
given by the relation

λ(k) = 1+ ταw(k) (2.164)

11) This is emphasized in eqs. (1.8) and (2.1) in [46] that are, of course,
asymptotic.
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for the Fourier transformed transition rates w(r) and probabilities λ(r), and
the choice

ψ(t) =
tα−1

τα
Eα,α

(
−
(
t

τ

)α)
(2.165)

for the waiting time density, where τ > 0 is a characteristic time constant.
With Eα,α(0) = 1 it follows that

ψ(t) ∼ tα−1 (2.166)

for t → 0. From Eα,α(x) ∼ x−2 for x → ∞ one finds

ψ(t) ∼ t−α−1 (2.167)

for t → ∞. For α = 1 the waiting time density becomes the exponential
distribution, and for α → 0 it approaches 1/t.

It had been observed already in the early 1970’s that continuous time ran-
dom walks are equivalent to generalized master equations [9, 66]. Similarly,
the Fourier-Laplace formula

f (k, u) = uα−1/(uα + Ck2) (2.168)

for the solution of CTRW’s with algbraic tails of the form (2.167) was well
known (see [117, eq.(21),p.402] [110, eq.(23),p.505] [67, eq.(29),p.3083]). Com-
parison with row 2 of the table makes the connection between the fractional
diffusion equation (2.159) and the CTRW-equation (2.162) evident. However,
this connection with fractional calculus was not made before the appearance
of [46, 60]. In particular, there is no mention of fractional derivatives or frac-
tional calculus in [6].

The rigorous relation between fractional diffusion and CTRW’s, established
in [46,60] and elaborated in [50,53,54,57], has become a fruitful starting point
for subsequent investigations, particularly into fractional Fokker-Planck equa-
tions with drift [19, 33, 51, 61, 80–83, 100, 111, 112,130].

Acknowledgement: The author thanks Th. Müller and S. Candelaresi for
reading the manuscript.
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A
Tables

Let α ∈ C, x > a

f (x) (Iαa+ f )(x)

f (λx) λ−α(Iαλa+ f )(λx), λ > 0 (A.1)

(x− a)β Γ(β + 1)
Γ(α + β + 1)

(x− a)α+β (A.2)

Re β > 0

eλx eλa(x− a)αE1,α+1(λ(x− a)) (A.3)

λ ∈ R

(x− a)β−1 eλx Γ(β)eλa

Γ(α + β)
(x− a)α+β−1

1F1(β; α + β; λ(x− a))

Re β > 0 (A.4)

(x− a)β−1 log(x− a)
Γ(β)(x− a)α+β−1

Γ(α + β)
[ψ(β − ψ(α + β) + log(x− a)]

(A.5)

(x− a)β−1Eγ,β((x− a)γ) (x− a)α+β−1Eγ,α+β((x− a)γ) (A.6)

Re β > 0, Reγ > 0
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B
Function Spaces

The set G denotes an interval, a domain in Rd or a measure space (G,A, µ) [8]
depending on the context. K stands for R or C. γ = (γ1, ..., γd) ∈ N

d
0 is a

multiindex and |γ| = ∑
d
i=1 γi. For the definition of Hilbert and Banach spaces

the reader may consult e.g. [128]. The following notation is used for various
spaces of continuous functions:

C0(G) := { f : G → K| f is continuous} (B.1)

Ck(G) := { f ∈ C0(G)| f is k-times continuously differentiable} (B.2)

Ck
0(G) := { f ∈ Ck(G)| f vanishes at the boundary ∂G} (B.3)

Ck
b(G) := { f ∈ Ck(G)| f is bounded} (B.4)

Ck
c(G) := { f ∈ Ck(G)| f has compact support} (B.5)

Ck
ub(G) := { f ∈ Ck(G)| f is bounded and uniformly continuous} (B.6)

ACk([a, b]) := { f ∈ Ck([a, b])| f (k) is absolutely continuous} (B.7)

For compact G the norm on these spaces is

‖ f‖∞ := sup
x∈G

| f (x)|. (B.8)

The Lebesgue spaces over (G,A, µ) are defined as

L
p
loc(G, µ) := { f : G → K | f p is integrable on every compact K ⊂ G} (B.9)

Lp(G, µ) := { f : G → K | f p is integrable} (B.10)

with norm

‖ f‖p :=



∫

G

| f (s)|pdµ(s)




1/p

. (B.11)
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For p = ∞

L∞(G, µ) := { f : G → K | f is measurable and ‖ f‖∞ < ∞} (B.12)

where

‖ f‖∞ := sup {|z| : z ∈ fess(G)} (B.13)

and

fess(G) := {z ∈ C : µ ({x ∈ G : | f (x)− z| < ε}) 6= 0 for all ε > 0} (B.14)

is the essential range of f .

The Hölder spaces Cα(G) with 0 < α < 1 are defined as

Cα(G) := { f : G → K|∃c ≥ 0 s.t. | f (x)− f (y)| ≤ c|x− y|α, ∀x, y ∈ G} (B.15)

with norm

‖ f‖α := ‖ f‖∞ + cα (B.16)

where cα is the smallest constant c in (B.15). For α > 1 the Hölder space Cα(G)
contains only the constant functions and therefore α is chosen as 0 < α < 1.
The spaces Ck,α(G), k ∈ N, consist of those functions f ∈ Ck(G) whose partial
derivatives of order k all belong to Cα(G).

The Sobolev spaces are defined by

Wk,p(G) =

{
f ∈ Lp(G) :

f is k-times differentiable in the
sense of distributions and Dγ f ∈
Lp(G) for all γ ∈ Nd

0 with |γ| ≤ k

}
(B.17)

where the derivative Dγ = ∂
γ1
1 ...∂γd

d with multiindex γ = (γ1, ..., γd) ∈ Nd
0 is

understood in the sense of distributions. A distribution f is inWk,p(G) if and
only if for each γ ∈ Nd

0 with |γ| ≤ k there exists fγ ∈ Lp(G) such that

∫

G

φ fγdx = (−1)|γ|
∫

G

(Dγ φ) fdx (B.18)

for all test functions φ. In the special case d = 1 one has f ∈ Wk,p(G) if and
only if f ∈ Ck−1(G), f (k−1) ∈ AC(G), and f (j) ∈ Lp(G) for j = 0, 1, ..., k. The
Sobolev spaces are equipped with the norm

‖ f‖Wk,p(G) = ∑
|γ|≤m

‖Dγ f‖p (B.19)
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(see [2]). A function is called rapidly decreasing if it is infinitely many times
differentiable, i.e. f ∈ C∞(Rd) and

lim
|x|→∞

|x|nDγ f (x) = 0 (B.20)

for all n ∈ N and γ ∈ Nd. The test function space

S(R
d) := { f ∈ C∞(R

d)| f is rapidly decreasing} (B.21)

is called Schwartz space.
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C
Distributions

Distributions are generalized functions [31]. They were invented to overcome
the differentiability requirements for functions in analysis and mathematical
physics [63, 105]. Distribution theory has also a physical origin. A physical
observable f can never be measured at a point x ∈ Rd because every measure-
ment apparatus averages over a small volume around x [115]. This “smearing
out” can be modelled as an integration with smooth “test functions” having
compact support.

Let X denote the space of admissible test functions. Commonly used test
function spaces are C∞(Rd), the space of infinitely often differentiable func-
tions, C∞

c (Rd), the space of smooth functions with compact support (see (B.5)),
C∞
0 (Rd), the space of smooth functions vanishing at infinity (see (B.3)), or the

so called Schwartz space S(Rd) of smooth functions decreasing rapidly at in-
finity (see (B.21)).

A distribution F : X → K is a linear and continuous mapping that maps
ϕ ∈ X to a real (K = R) or complex (K = C) number 1. There exists
a canonical correspondence between functions and distributions. More pre-
cisely, for every locally integrable function f ∈ L1loc(Rd) there exists a distri-
bution F f = 〈 f , .〉 (often also denoted with the same symbol f ) defined by

F f (ϕ) = 〈 f , ϕ〉 =
∫

Rd

f (x)ϕ(x) dx (C.1)

for every test function ϕ ∈ X. Distributions that can be written in this way are
called regular distributions. Distributions that are not regular are sometimes
called singular. The mapping f → 〈 f , .〉 that assigns to a locally integrable
f its associated distribution is injective and continuous. The set of distribu-
tions is again a vector space, namely the dual space of the vector space of test
functions, and it is denoted as X′ where X is the test function space.

1) For vector valued distributions see [106]
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Important examples for singular distributions are the Dirac δ-function and
its derivatives. They are defined by the rules
∫

δ(x)ϕ(x)dx = ϕ(0) (C.2)
∫

δ(n)(x)ϕ(x) = (−1)n
dnϕ

dxn

∣∣∣∣
x=0

(C.3)

for every test function ϕ ∈ X and n ∈ N. Clearly, δ(x) is not a function,
because if it were a function, then

∫
δ(x)ϕ(x)dx = 0 would have to hold.

Another example for a singular distribution is the finite part or principal value
P {1/x} of 1/x. It is defined by
〈
P
{
1
x

}
, ϕ

〉
= lim

ε→0+

∫

|x|≥ε

ϕ(x)

x
dx (C.4)

for ϕ ∈ C∞
c (R). It is a singular distribution on R, but regular on R \ {0}where

it coincides with the function 1/x.

Equation (C.2) illustrates how distributions circumvent the limitations of
differentiation for ordinary functions. The basic idea is the formula for partial
integration
∫

G

∂i f (x)ϕ(x)dx = −
∫

G

f (x)∂iϕ(x)dx (C.5)

valid for f ∈ C1
c (G), ϕ ∈ C1(G), i = 1, ..., d and G ⊂ Rd an open set. The

formula is proved by extending f ϕ as 0 to all of Rd and using Leibniz’ product
rule. Rewriting the formula as

〈∂i f , ϕ〉 = −〈 f , ∂iϕ〉 (C.6)

suggests to view ∂i f again as a linear continuous mapping (integral) on a
space X of test functions ϕ ∈ X. Then the formula is a rule for differenti-
ating f given that ϕ is differentiable.

Distributions on the test function space S(Rd) are called tempered distribu-

tions. The space of tempered distributions is the dual space S(Rd)
′
. Tempered

distributions generalize locally integrable functions growing at most polyno-
mially for |x| → ∞. All distributions with compact support are tempered.
Square integrable functions are tempered distributions. The derivative of a
tempered distribution is again a tempered distribution. S(Rd) is dense in
Lp(Rd) for all 1 ≤ p < ∞ but not in L∞(Rd). The Fourier transform and its
inverse are continous maps of the Schwartz space onto itself. A distribution
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f belongs to S(Rd)
′
if and only if it is the derivative of a continuous func-

tion with slow growth, i.e. it is of the form f = Dγ[(1 + |x|2)k/2g(x)] where
k ∈ N, γ ∈ Nd and g is a bounded continuous function on Rd. Note that the
exponential function is not a tempered distribution.

A distribution f ∈ S(Rd)
′
is said to have compact support if there exists

a compact subset K ⊂ R
d such that 〈 f , ϕ〉 = 0 for all test functions with

supp ϕ ∩ K = ∅. The Dirac δ-function is an example. Other examples are
Radon measures on a compact set K. They can be described as linear func-
tionals on C0(K). If the set K is sufficiently regular (e.g. if it is the closure of
a region with piecewise smooth boundary) then every distribution with com-
pact support in K can be written in the form

f = ∑
|γ|≤N

Dγ fγ (C.7)

where γ = (γ1, ..., γd), γj ≥ 0 is a multiindex, |γ| = ∑ γi and fγ are continu-
ous functions of compact support. Here N ≥ 0 and the partial derivatives in
Dγ are distributional derivatives defined above. A special case are distribu-
tions with support in a single point taken as {0}. Any such distributions can
be written in the form

f = ∑
|γ|≤N

cγ Dγ δ (C.8)

where δ is the Dirac δ-function and cγ are constants.

The multiplication of a distribution f with a smooth function g is defined
by the formula 〈g f , ϕ〉 = 〈 f , gϕ〉 where g ∈ C∞(G). A combination of multi-
plication by a smooth function and differentiation allows to define differential
operators

A = ∑
|γ|≤m

aγ(x)Dγ (C.9)

with smooth aγ(x) ∈ C∞(G). They are well defined for all distributions in
C∞
c (G)′.

A distribution is called homogeneous of degree α ∈ C if

f (λx) = λα f (x) (C.10)

for all λ > 0. Here λα = exp(α logλ) is the standard definition. The Dirac δ-
distribution is homogeneous of degree −d. For regular distributions the defi-
nition coincides with homogeneity of functions f ∈ L1loc(R

d). The convolution
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kernels Kα
± from eq. (2.39) are homogeneous of degree α − 1. Homogeneous

distributions remain homogeneous under differentiation. A homogeneous lo-
cally integrable function g on Rd \ {0} of degree α can be extended to homo-
geneous distributions f on all of Rd. The degree of homogeneity of f must
again be α. As long as α 6= −d,−d− 1,−d− 2, ... the integral

〈gβ, ϕ〉 =
∫

g

(
x

|x|

)
|x|βddx (C.11)

which converges absolutely for Re β > −d can be used to define f = gα by
analytic continuation from the region Re β > −d to the point α. For α =
−d,−d− 1, ..., however, this is not always possible. An example is the function
1/|x| on R \ {0}. It cannot be extended to a homogeneous distribution of
degree −1 on all of R.

For f ∈ L1loc(G1) and g ∈ L1loc(G2) their tensor product is the function ( f ⊗
g)(x, y) = f (x)g(y) defined on G1 ×G2. The function f ⊗ g gives a functional

〈 f ⊗ g, ϕ(x, y)〉 = 〈 f (x), 〈g(y), ϕ(x, y)〉〉 (C.12)

for ϕ ∈ C∞
c (G1 × G2). For two distributions this formula defines the their

tensor product. An example is a measure µ(x) ⊗ δ(y) concentrated on the
surface y = 0 in G1 ⊗ G2 where µ(x) is a measure on G1. The convolution of
distribution defined in the main text (see eq. (2.52) can then be defined by the
formula

〈 f ∗ g, ϕ〉 = 〈( f ⊗ g)(x, y), ϕ(x+ y)〉 (C.13)

whenever one of the distributions f or g has compact support.



published in:
Anomalous Transport: Foundations and Applications, R. Klages et al. (eds.),
Wiley-VCH, Weinheim, 2008, p. 17, ISBN: 978-3-527-40722-4
Copyright © 2007 R. Hilfer, Stuttgart

77

Index
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additivity, 16
adjoint operators, 15
analysis of singularities, 26
anomalous subdiffusion, 31

Banach space, 24, 28, 34, 53
Bernstein function, 37
Bessel function, 41
binomial formula, 1, 23
Bochner-Levy diffusion, 27, 28, 39
Borel measure, 36

Cauchy problem, 34
causality, 36
classification of phase transitions, 26
conjugate Riesz potential, 11
continuity in time, 35
continuous time random walk, 42
convolution
– distributions, 13
– functions, 10
– integral, 7
– kernel, 11, 13, 22, 60
– operators, 11, 13, 29, 36
– periodic functions, 9
– product, 10, 13
– semigroup, 36
critical phenomena, 26
CTRW, 42, 43

difference quotient, 5, 6, 22, 23
diffusion, 27, 31–33, 39–43
– anomalous, 31
– fractional, 27, 32, 33, 39–43
Dirac δ function, 11, 13, 58, 59
Dirac-measure, 37
distribution(s), 57
– convolution, 13, 60
– differentiation, 58

– Dirac δ, 13, 58
– direct product, 60
– homogeneous, 59
– regular, 13, 57
– singular, 13, 57
– tempered, 58
– with compact support, 59

Ehrenfest classification, 26
eigenfunction(s)
– fractional derivatives, 29
ergodicity breaking, 34
essential range, 54
Euler, 2, 4
Euler Beta function, 16
exponential series, 3, 5

Fokker-Planck equation, 39
Fourier, 5
Fourier series, 9
Fourier transformation, 14, 22
fractional derivative
– at lower limit, 26
– definition
– – generalized Riemann-Liouville, 19
– – Grünwald-Letnikov, 23
– – lower limit, 16
– – Marchaud-Hadamard, 19
– – of distributions, 24
– – Riemann-Liouville, 16
– – Riesz, 22
– – upper limit, 16
– – Weyl-Liouville, 21
– – Weyl-Marchaud, 21
– eigenfunction, 29
– generalized Riemann-Liouville, 19
– Grünwald-Letnikov, 23
– history, 1
– – Euler, 2
– – Fourier, 5
– – Grünwald, 6
– – Leibniz, 2
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– – Liouville, 2, 4
– – paradoxa, 2
– – Riemann, 6
– interpolation, 19
– Liouville(-Caputo), 19
– local, 26
– Marchaud-Hadamard, 19, 25, 38
– notation, 17
– of distributions, 24
– order, 16, 19, 21–24
– Riemann-Liouville, 16, 19
– Riesz, 22
– symbols, 17
– type, 19
– Weyl-Liouville, 21
– Weyl-Marchaud, 21
fractional difference quotient, 23
fractional differential equation, 29, 31
fractional diffusion, 39, 40, 42
– Bochner-Levy, 27, 28, 39
– Montroll-Weiss, 40
fractional integral, 7
– by parts, 15
– common symbols, 8
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– definition
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– – of distributions, 13
– – Riemann-Liouville, 8
– – Riesz, 11
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– interpolation, 12
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– notation, 8
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– Riemann, 6
– Riemann-Liouville, 8
– Riesz, 11, 12
– Riesz-Feller, 12
– Weyl, 9, 10
fractional integration
– by parts, 15
fractional master equation, 42
fractional powers, 27
fractional stationarity, 39
fractional time, 33
fractional time evolution, 36
function(s)
– p-integrable, 53
– Bernstein, 37
– Bessel, 41
– Beta, 16
– continuous differentiable, 53

– essential range, 54
– Gamma, 2, 8
– generalized, 57
– Hölder continuous, 54
– locally integrable, 7, 53
– Mittag-Leffler, 29
– periodic, 9, 10, 21
– regularly varying, 26
– slowly varying, 27
– smooth, 53

Gamma function, 2, 8
Grünwald, 5
Grünwald-Letnikov derivative, 22

Hardy-Littlewood theorem, 15, 16
Heaviside step function, 11
Hilbert space, 27, 53
homogeneity of time, 35
homogenous divisibilty, 36–38
Hölder space, 54
Hörmander symbol class, 28

identity operator, 20, 23
infinitesimal generator, 28, 38
integral transforms, 14
integration
– by parts, 15
– fractional, 8, 9, 11, 12
– – Riemann-Liouville, 8
– – Riesz, 11
– – Weyl, 9
– iterated, 7
integroderivatives, 5
irreversibility problem
– normal, 34
– reversed, 34
iterated integrals, 7

Kohn-Nirenberg pseudodifferential opera-
tor, 28

Laplace transformation, 14
Laplacian, 27, 39
Lebesgue space, 53
Leibniz, 1, 2
Leibniz’ paradox, 2
Leibniz’ product rule, 1
Liouville, 4
Lizorkin space, 14
local fractional derivative, 26
locality, 33, 40
locally integrable function, 53

Marchaud fractional derivative, 19
master equation, 42
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– fractional, 42
Mellin transformation, 38
Mittag-Leffler function, 29
Montroll-Weiss diffusion, 40

nonlocality, 32–34
– space, 32
– time, 33

operator(s)
– adjoint, 15
– closed, 28
– convolution, 11, 13, 29, 36
– fractional powers, 27
– identity, 20, 23
– Kohn-Nirenberg, 28
– Kohn-Nirenberg symbol, 28
– Laplace, 27, 39
– pseudodifferential, 28
– semigroup of, 34
– spectral decomposition, 27
– symbol, 28
– translation, 20, 23

principal value, 58
pseudodifferential operators, 28

random walk
– continuous time, 42
rapidly decreasing function, 55
regularly varying function, 26
Riemann, 6
Riemann-Liouville derivatives, 16
Riemann-Liouville fractional integrals, 8
Riesz fractional derivatives, 22
Riesz fractional integrals, 11
Riesz kernel, 12
Riesz potential, 11
– conjugate, 11
Riesz-Feller kernel, 12

Schwartz space, 55, 58
semigroup, 16, 27, 28, 34–38
– generator, 35
– of convolutions, 36
singularities, 26
slowly varying function, 27
Sobolev space, 54
space
– Banach, 24, 28, 34, 53
– continuous functions, 53
– Hilbert, 27, 53
– Hölder, 54
– Lebesgue, 53
– Lizorkin, 14
– Schwartz, 55
– Sobolev, 54
– test functions, 57
stationarity, 34, 39
subdiffusion, 31

test functions, 57
time
– continuity, 35
– evolution, 34
– fractional, 33
– homogeneity, 35
– homogenous divisibilty, 36–38
– infinitesimal generator, 38
– translation, 33, 35, 36
time evolution, 34
translation invariance, 33, 35, 36
translation operator, 20, 23
types of fractional derivative, 19

unit step function, 11

Weyl fractional integrals, 9

Youngs inequality, 15


