Boundary manifold and complement of complex line arrangement

Enrique Artal Bartolo, Benoît Guerville, Miguel Marco Buzunáriz

Proposition graph.

π

A

in which we only keep the vertices of rank 1 and 0. It contain all the combi-

Let

A

graph of the positive MacLane ar-

The Figure below gives the incidence

Definition. The wiring diagram associated to the path \(\gamma \) is the subset of

\[W_A,\gamma = \{ (t, p^{-1}(\gamma(t)) \cap A) \mid t \in [0,1] \} \]

For example, the wiring diagram of the positive MacLane arrangement is :

\[\begin{array}{c}
1 & 2 & 3 \\
\gamma & \gamma & \gamma \\
\end{array} \]

The incidence graph is a subgraph of the Hasse diagram of the arrangement,

in which we only keep the vertices of rank 1 and 0. It contain all the combi-

Definition. Let \(A \) be a line arrangement in \(\mathbb{C}P^2 \), and \(\Gamma(A) \) be the non-

oriented bipartite graph defined by :

\[\text{Point – vertices : } v_p, P \in \mathcal{P} \]
\[\text{Line – vertices : } v_L, L \in A \]

The edges of \(\Gamma(A) \) are of the form \(Y(L, P) \), with \(P \in \mathcal{P}, L \in A \) and \(P \in L \).

The Figure below gives the incidence graph of the positive MacLane arran-

The boundary manifold

The boundary manifold depends only on the combinatorics of \(A \). The fol-

following proposition describes a presentation of \(\pi_1(M(A)) \) from the incidence graph.

Proposition ([BGB12]). The fundamental group \(\pi_1(M(A)) \) admits the fol-

owing presentation:

- A set of generators \(\{ x_i \mid L_i \in A \} \), that represent the loops around the

lines.
- A set of generators \(\{ e_{i,j} \} \), indexed by the edges \(Y(L_i, L_j) \) that are not in the maximal tree.
- For each singular point \(P_s \), a set of relations given by the cyclic commutator \([x_{i_1}x_{i_2}^{-1}, \ldots, x_{i_m}x_{i_{m+1}}^{-1}] \) where \(L_{i_1}, \ldots, L_{i_m} \) are the lines that pass through \(P_s \) and \(i_m \) is in uppermost.

Combatorics and wiring diagram

let \(\mathcal{P} = \{ P_1, \ldots, P_n \} \) be the set of the singular points of \(A \), \(p : \mathbb{C} \to C \) be

a generic projection. We note \(\mathcal{Q} = \{ Q_1, \ldots, Q_k \} \) the images of the singular points of \(A \) by the projection \(p \).

Consider a path \(\gamma : [0,1] \to A \) with no self-intersection, and such that

\(\mathcal{Q} \subset \gamma([0,1]) \).

Definition. The wiring diagram associated to the path \(\gamma \) is the subset of

\[W_A,\gamma = \{ (t, p^{-1}(\gamma(t)) \cap A) \mid t \in [0,1] \} \]

The main result

Definition. For any cycle \(\gamma \) in \(W_A \), we define the upper word \(\sigma_\gamma \) by :

\[\sigma_\gamma = \prod_{e \in E}(a_{e}(\gamma)) \]

where \(e(\sigma,\gamma) \) is 1 (resp. -1) if the crossing is positive (resp. negative), and

\(a_e \) the word of Arvola of \(s \) and \(S \), the set of segment of \(W_A \) intersecting

uppermost \(\gamma \).

In the example at the left, the segment \(s \) (dashed line) is the only one upper

segment of the cycle \(\gamma \). The Arvola’s word of \(s \) is \(a_s = x_1x_2x_1^{-1} \). So we obtain that :

\[\sigma_\gamma = x_2x_1^{-1}x_2^{-1} \]

because the crossing between \(\gamma \) and \(s \) is negative.

Definition. For any cycle \(\varepsilon \) in \(M(A) \), we define the uncrossing word \(\delta_\varepsilon \) as

a product of the \(x_i \) such that \(\delta_\varepsilon \varepsilon \) is the path in \(\text{im}(\varepsilon) \) corresponding

to \(\varepsilon \) (i.e. such that \(\forall \varepsilon \in \pi_1(\Gamma(A)), e \in \sigma^{-1}(\varepsilon) \Rightarrow \varepsilon(e) = \delta_\varepsilon(e) \)).

Let \(S \) be the normal sub-group of \(\pi_1(M(A)) \) generated by the elements

\(\delta_\varepsilon \sigma^{-1} \), where \(\varepsilon \) are the cycles of \(\pi_1(M(A)) \).

Theorem ([BGB12]). Let \(A \) be a complex line arrangement, \(M_A \) be the

boundary manifold, and \(\Gamma_A \) the incidence graph of \(A \). There exists a
group \(S \) such that the following short sequence is exact :

\[0 \rightarrow S \xrightarrow{i_s} \pi_1(M(A)) \xrightarrow{\pi(0)} \pi_1(E(A)) \rightarrow 0, \]

where \(i_s \) is induced by the inclusion of \(M(A) \) in \(E(A) \).

Furthermore, a presentation of \(S \) can be computed from the wiring dia-

gram \(W_A,\gamma \).

Moreover, the generators of this presentation of \(S \) can be expressed in terms

of the generators of Proposition below.

Sketch of the proof :

- The surjectivity of \(i_s \) comes from the Zariski-Van Kampen and the isomor-

phism between \(\pi_1(\mathbb{C} \setminus A) \) and \(\pi_1(\mathbb{C} \setminus (A - L_0)) \).
- Since \(S \) is constructed as a subgroup of \(\pi_1(M(A)) \), then \(\Phi \) is one-to-one.
- We glue on the cycle of the boundary manifold some 2-cells which give the

retraction of \(\delta_\varepsilon \sigma \). So the composition map \(i_s \circ \Phi \) is zero.
- To show the exactness of the short exact sequence, we prove that the relation of

the quotient \(\pi_1(M(A))/S \) implies the usual relation of \(\pi_1(E(A)) \).

References

[Arv92] William A. Arvola. The fundamental group of the complement of an arrange-

[BGB12] Enrique Artal Bartolo, Benoît Guerville, and Miguel Marco Buzunáriz. Boundary

manifold and complement of complex line arrangement. 2012.

[BRAB05] Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín, and

Miguel Marco Buzunáriz. Topology and combinatorics of real line arrangements,

Compositio Mathematica 141 (2005).

[CS08] Daniel C. Cohen and Alexander I. Suciu. The boundary manifold of a complex line

arrangement. 2008.
